首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononuclear O,O-coordinated complexes K2(MLCl2) M = Zn(II), Cd(II) and dinuclear complexes (MZnLCl2R2)x along with dinuclear N,N-coordinated complexes (M′ZnH2LCl2R2)y (where M = Zn(II), Cd(II), Hg(II) and M′ = M and Sn(IV); R = Cl, CH3; x = 0, ?2; y = 0, +2) of N′-1-,N′-2-dihydroxy-N-1-,N-2-dipyridin-2-ylethanedimidamide (H2L) have been prepared. All complexes have been characterized by 1H NMR, IR, EI-mass spectroscopy and elemental microanalysis. These results are in agreement with our prediction for structures of mono and dinuclear complexes of H2L and L?2 with Zn(II) in the gas phase by theoretical studies.  相似文献   

2.
The crystal and molecular Structure of bis[dinitrato-(2,5,8,15,18,21-hexaoxatricyclo[20.4.0.09,14]hexa-consane)europium(III)]pentakis(nitrato) europiate(III) ([Eu(NO3)2·LA]2[Eu(NO3)5]) has been determined from single-crystal X-ray diffraction. The complex crystallizes in the monoclinic space group P21/c (ITC No. 14): a = 13.614(3)Å, b = 21.697(4)Å, c = 22.591(5)Å, β = 107.15(2)°, Z = 4. The structure was refined to a final R value of 0.055 (Rw = 0.055). The asymmetric unit contains three independent ions with approximate C2 symmetry: [Eu(NO3)5]2? and two distinct [Eu(NO3)2.La]+ cations with the macrocyclic ligand in the cis-syn-cis-conformation (A-isomer). The Eu(III) ions are 10-coordinated with the following mean bond lengths: Eu? O(nitrate) = 2.46(3)Å in the anion and the two cations, Eu? O(ether) = 2.55(9)Å in both cations. For the uncomplexed A-and B-isomers, as well as for their complexes with various metal ions, a conformational analysis has been made on the six O-atoms of the ligand which can be considererd as a fluxional ring. In the presently reported europium complex cations, the oxygen-ring conformation is almost a perfect boat with the metal ions lying in the least-sqiares plane of the O-atoms (deviation: 0.02–0.05Å). The same conformation prevails in all the complexes containing the A-isomer(exception: dimethylthallium complex) and in most of the complexes with the B-isomer. For this isomer, a chair conformation is found in the uncomplexed ligand, in the sodium complex, and in the complex with dimethylthallium. The occurrence of these conformations is discussed with respect to the crystallographic symmetry of the complexes and the relative mean M? O and O? O distances.  相似文献   

3.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

4.
Calculations of the optimal geometry and standard thermodynamic parameters of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) isomerous macrotricyclic complexes with MN2O2, MN2S2, and MN4 chelate bonds, which can in principle appear as a result of template processes between gelatine-immobilized hexacyanoferrates (II) of corresponding M(II) metal ions, thiocarbamoylmethaneamide (thiooxamide) H2N-C(=S)-C(=O)-NH2, and ethanedial HC(=O)-CH(=O), were performed according to the B3LYP hybrid density functional method using a 6-31G(d) basis set with the Gaussian 98 program. It was found that of all of the considered M(II), the most stable are complexes with MN4 chelate bonds, where the values of a standard enthalpy Δf H 298o and a standard Gibbs energy, Δf G o for all complexes studied are positive.  相似文献   

5.
A series of closely related dinuclear (head-head) PtII complexes of general composition cis-[a2PtL2Pta′2]2+ with a,a′ = NH3 or CH3NH2 and L = 1-methyluracilate-N3,O4 (1-MeU) or 1-methylthyminate-N3,O4 (1-MeT) has been prepared and the solution behavior toward CeIV oxidation studied. The X-ray crystal structure of a representative example cis-[(CH3NH2)2Pt(1-MeU)2Pt(CH3NH2)2](ClO4)2 · 0.5 H2O ( 1b ), has been determined: Monoclinic, space group P21/c, a = 11.907(7) Å, b = 19.087(14) Å, c = 12.525(7) Å, β = 90.49(4)°, Z = 4. Oxidation of these diplatinum(II) complexes ([Pt2.0]2) with CeIV in aqueous solution to the corresponding diplatinum(III) species ([Pt3.0]2) proceeds via tetranuclear [Pt2.25]4 or dinuclear [Pt2.5]2 mixed-valence state compounds, depending on the nature of the a′ ligands: with a′ = NH3, blue green [Pt2.25]4 forms, whereas with a′ = CH3NH2, purple [Pt2.5]2 represents the intermediate. This difference is interpreted in terms of differences in bulk between NH3 and CH3NH2 ligands trans to the O(4) positions of the bridging nucleobases which influence the ability of dinuclear species to associate via the O(4)2 Pt a2′ faces.  相似文献   

6.
The structures of tris-hexafluoroacetylacetonates Al(hfa)3 and Sc(hfa)3·H2O are determined by single crystal X-ray crystallography (Bruker-Nonius X8 Apex diffractometer, MoK α radiation, T = 150(2) K). The Al(hfa)3 complex is trigonal, a = 17.8944(11) Å, c = 12.4061(11) Å, P-3c1 space group, V = 3440.3(4) Å3, Z = 6, R = 0.076. The Sc(hfa)3·H2O complex is monoclinic, a = 16.0926(4) Å, b = 14.7980(3) Å, c = 24.4020(5) Å, β = 125.641(1)°, P21/c space group, V = 4722.54(18) Å3, Z = 8, R = 0.060. The structures of the complexes are formed by neutral molecules; the coordination environment of the metal atom involves six oxygen atoms of three β-diketone ligands (Al(hfa)3) and, additionally, a water oxygen atom (Sc(hfa)3·H2O). The shortest Al...Al distance is 6.203(6) Å. The Sc(hfa)3·H2O molecules are joined in dimers by hydrogen bonds with Sc...Sc separations of 5.6992(8) Å and 5.6853(8) Å. In the crystals, the molecules are joined by van der Waals interactions, moreover, there are intermolecular contacts F...H ~ 2.5 Å in the structure of Sc(hfa)3·H2O.  相似文献   

7.
The design, synthesis and coordination of a novel multisite vic-dioxime compound, LH2, containing flexible pyridine substituents and aminophenylsulfanyl moieties on the periphery, facilitating solubility in water as pyridinium hydrochloride salt are described. LH2 was prepared by the reaction between 2-(2-pyridylethylamino)-benzenethiol and (E,E)-dichloroglydioxime. Mononuclear [(E,E)M] (M=NiII, CuII, CoII, FeII and MnII) and dinuclear uranyl (UO2 II) complexes of LH2 were isolated and characterized with metal:ligand ratios of 1:2 and 2:2, respectively. The reaction of Na2PdCl4·3H2O and AgNO3 in DMF with the mononuclear complex, (LH)2Ni, resulted in the formation of the heterotrinuclear complexes [Pd2Ni(LH)2]Cl4 and [Ag2Ni(LH)2](NO3)2. The complexes were characterized by elemental analysis, 1H-n.m.r., u.v.--vis. spectroscopy, i.r., and MS (LSIMS). The redox properties of the complexes were studied by cyclic voltammetry.  相似文献   

8.
This work investigates effects of poly(γ-butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain-end-capped polymers with similar molecular weights, BnO-[C(=O)(CH2)3O]n-R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O-[C(=O)(CH2)3O]n-H (R′ = Bn, Ph2CHCH2) with Mn ranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain-end capping renders R-protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2271–2279  相似文献   

9.
The reaction of the potassium salts of N‐phosphorylated thioureas [4′‐benzo‐15‐crown‐5]NHC(S)NHP(Y)(OiPr)2 (Y = S, HLI ; Y = O, HLII ) with ZnII and CoII cations in aqueous EtOH leads to complexes of formulae Zn(LI,IIS,Y)2 (Y = S, 1 ; Y = O, 2 ) and Co(LIS,S′)2 ( 3 ), while interaction of the potassium salt of N‐phosphorylated thioamide [4′‐benzo‐15‐crown‐5]C(S)NHP(O)(OiPr)2 ( HLIII ) with ZnII in the same conditions leads to the complex Zn(HLIII)(LIIIS,O)2 ( 4 ). The reaction of the potassium salt of crown ether‐containing N‐phosphorylated bis‐thiourea N,N′‐[C(S)NHP(O)(OiPr)2]2‐1,10‐diaza‐18‐crown‐6 ( H2L ) with CoII, ZnII and PdII cations in anhydrous CH3OH leads to complexes M2(L‐O,S)2 (M = Co, 5 ; Zn, 6 ; M = Pd, 7 ). Thioamide HLIII was investigated by single‐crystal X‐ray diffraction.  相似文献   

10.
Two new complexes {[Eu(2, 4-DFBA)3 · (H2O)2] · H2O} n (1) and [Eu(2-BrBA)3 · H2O] n (2) (2, 4-DFBA = 2, 4-difluorobenzoate, 2-BrBA = 2-bromobenzoate) have been synthesized and characterized by single crystal X-ray diffraction. 1 has a 1-D chain structure, in which Eu(III) ions are bridged by single COO? groups and a 2-D supramolecular network is formed by hydrogen bond interactions. In 1, each Eu(III) is eight-coordinate with six oxygens from four 2,4-DFBA ligands and two waters. 2 has a 1-D chain structure, in which Eu(III) ions are bridged by bridging-chelating-bridging COO? groups. In 2, each Eu(III) ion is nine-coordinate with eight oxygens from five 2-BrBA ligands and one water. The two complexes exhibit intense luminescence at room temperature. The 5D07F j (j = 0–4) transition emissions of Eu(III) have been observed.  相似文献   

11.
Eu3+, Dy3+, and Yb3+ complexes of the dota‐derived tetramide N,N′,N″,N′′′‐[1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetrayltetrakis(1‐oxoethane‐2,1‐diyl)]tetrakis[glycine] (H4dotagl) are potential CEST contrast agents in MRI. In the [Ln(dotagl)] complexes, the Ln3+ ion is in the cage formed by the four ring N‐atoms and the amide O‐atom donor atoms, and a H2O molecule occupies the ninth coordination site. The stability constants of the [Ln(dotagl)] complexes are ca. 10 orders of magnitude lower than those of the [Ln(dota)] analogues (H4dota=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The free carboxylate groups in [Ln(dotagl)] are protonated in the pH range 1–5, resulting in mono‐, di‐, tri‐, and tetraprotonated species. Complexes with divalent metals (Mg2+, Ca2+, and Cu2+) are also of relatively low stability. At pH>8, Cu2+ forms a hydroxo complex; however, the amide H‐atom(s) does not dissociate due to the absence of anchor N‐atom(s), which is the result of the rigid structure of the ring. The relaxivities of [Gd(dotagl)] decrease from 10 to 25°, then increase between 30–50°. This unusual trend is interpreted with the low H2O‐exchange rate. The [Ln(dotagl)] complexes form slowly, via the equilibrium formation of a monoprotonated intermediate, which deprotonates and rearranges to the product in a slow, OH?‐catalyzed reaction. The formation rates are lower than those for the corresponding Ln(dota) complexes. The dissociation rate of [Eu(dotagl)] is directly proportional to [H+] (0.1–1.0M HClO4); the proton‐assisted dissociation rate is lower for [Eu(H4dotagl)] (k1=8.1?10?6 M ?1 s?1) than for [Eu(dota)] (k1=1.4?10?5 M ?1 s?1).  相似文献   

12.
A new amide-based multidentate ligand, N,N′-1,2-ethanediyl-bis{2-[(N,N-diethylcarbamoyl)methoxy]benzamide} (L) reacts with M(Pic)3?·?6H2O to give rare-earth picrate complexes [M2L2(Pic)4(H2O)2](Pic)2 (M = La (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), Yb (7), Y (8)). X-ray single-crystal diffraction analyses indicate that dinuclear complexes 3?·?2C4H8O2, 6?·?2C4H8O2, and 8?·?2CH3CN are isomorphous. Each metal is nine-coordinate by four oxygen atoms of two ligands, four oxygen atoms of two bidentate picrates, and one water molecule with a distorted monocapped square antiprism. With hydrogen bonds between the free picrate anions and the coordination cations the complexes exhibit 2-D layers. The luminescent properties of 3 [Eu2L2(Pic)4(H2O)2](Pic)2 are described and factors that influence luminescent intensities are also discussed.  相似文献   

13.
Group 3 and rare-earth triflate-complexes M(OTf)2(bdmpza) {M?=?Sc (1Sc ), Y (1Y ), La (1La ), Sm (1Sm ), Eu (1Eu ) OTf?=?SO3CF3} bearing the heteroscorpionate ligand bdmpza {bdmpza?=?bis(3,5-dimethyl-pyrazol-1-yl)acetate} have been synthesized and characterized, together with the yttrium and europium complexes M(OTf)(bdmpza)2 {M?=?Y (2Y ), Eu (2Eu )}. The photoluminescent behavior of 2Eu has been investigated. The coordination mode of the [N,N,O]-donor in these complexes has been elucidated by DFT calculations. The cytotoxic effect of selected complexes and of the free ligand toward HeLa cells has been evaluated.  相似文献   

14.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

15.
Two dinuclear Fe(III) metal–organic complexes with tetracarboxylate and chelating N-donor ligands, [Fe(Hbtec)(phen)(H2O)]2·2H2O (1) and [Fe(Hbtec)(bpy)(H2O)]2·2H2O (2) (H4btec = 1,2,3,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) have been prepared and characterized by elemental analysis, IR spectroscopic, and X-ray diffraction methods. Both complexes crystallize in the monoclinic space group P21/c with two Fe(III) ions bridged by two Hbtec3? ligands into a dinuclear unit. Hydrogen bonding connects the dinuclear units into a 3-D framework. The dinuclear units are 10-connected nodes that produce a 3-D framework with topology Schläfli symbol as (312·428·55). Thermal stabilities and luminescent properties of the two complexes have also been investigated.  相似文献   

16.
The significant variety in the crystal structures of rare‐earth carboxylate complexes is due to both the large coordination numbers of the rare‐earth cations and the ability of the carboxylate anions to form several types of bridges between rare‐earth metal atoms. Therefore, these complexes are represented by mono‐, di‐ and polynuclear complexes, and by coordination polymers. The interaction of LnCl3(thf)x (Ln = Eu or Y; thf is tetrahydrofuran) with sodium or diethylammonium diphenylacetate in methanol followed by recrystallization from a DME/THF/hexane solvent mixture (DME is 1,2‐dimethoxyethane) leads to crystals of the non‐isomorphic dinuclear complexes tetrakis(μ‐2,2‐diphenylacetato)‐κ4O:O′;κ3O,O′:O′;κ3O:O,O′‐bis[(1,2‐dimethoxyethane‐κ2O,O′)(2,2‐diphenylacetato‐κ2O,O′)europium(III)], [Eu(C14H11O2)6(C4H10O2)2], (I), and tetrakis(μ‐2,2‐diphenylacetato)‐κ4O:O′;κ3O,O′:O′;κ3O:O,O′‐bis[(1,2‐dimethoxyethane‐κ2O,O′)(2,2‐diphenylacetato‐κ2O,O′)yttrium(III)], [Y(C14H11O2)6(C4H10O2)2], (II), possessing monoclinic (P21/c) symmetry. The [Ln(Ph2CHCOO)3(dme)]2 molecule (Ln = Eu or Y) lies on an inversion centre and exhibits three different coordination modes of the diphenylacetate ligands, namely bidentate κ2O,O′‐terminal, bidentate μ2‐κ1O1O′‐bridging and tridentate μ2‐κ1O2O,O′‐semibridging. The terminal and bridging ligands in (I) are disordered over two positions, with an occupancy ratio of 0.806 (2):0.194 (2). The interaction of EuCl3(thf)2 with Na[Ph3CCOO] in methanol followed by crystallization from hot methanol produces crystals of tetrakis(methanol‐κO)tris(2,2,2‐triphenylacetato)‐κ4O:O′;κO‐europium(III) methanol disolvate, [Eu(C19H15O2)3(CH3OH)4]·2CH3OH, (III)·2MeOH, with triclinic (P) symmetry. The molecule of (III) contains two O,O′‐bidentate and one O‐monodentate terminal triphenylacetate ligand. (III)·2MeOH possesses one intramolecular and four intermolecular hydrogen bonds, forming a [(III)·2MeOH]2 dimer with two bridging methanol molecules.  相似文献   

17.
Two isostructural dinuclear lanthanide(III)/Schiff-base complexes [{Ce1.5Eu0.5(clapi)}2]·2CH3CN (1) and [{La1.5Eu0.5(clapi)}2]·2CH3CN (2) {H3clapi = 2-(5-chloride-2-hydroxyphenyl)-1,3-bis[4-(5-chloride-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine} have been prepared by template procedure and characterized by elemental analyses, ICP, IR, and single-crystal X-ray diffraction analyses. Lanthanide ions Ce(III) and Eu(III) in 1, and La(III) and Eu(III) in 2 are disordered with occupancies 0.75 for Ce and 0.25 for Eu in 1; 0.75 for La and 0.25 for Eu in 2. In the compounds, each lanthanide is coordinated to four N and four O atoms from two clapi3? ligands, forming a distorted square antiprism. Two phenol oxygen atoms from the middle arms of the two heptadentate μ2-bridging ligands connect the two Ce(Eu) atoms in 1, and La(Eu) in 2. The solution of the two complexes in CH2Cl2 exhibits red fluorescence from Eu3+ ions at 77 K, very weak at room temperature.  相似文献   

18.
Single crystal X-ray diffraction study has been performed for heterometallic complexes based on lead(II) hexafluoroacetylacetonate and copper(II) β-diketonates. Crystal data for Cu(aa)2·Pb(hfa)2: a = 8.741(2) Å, b = 12.124(2) Å, c = 13.741(3) Å, α = 89.70(3)°, β = 89.50(3)°, γ = 75.06(3)°, space group P-1, Z = 2, d calc = 2.084 g/cm3; for Cu(hfa)2 Pb(hfa)2: a = 9.334(2) Å, b = 14.584(3) Å, c = 23.102(5) Å, β = 96.82(3)°, space group P21/c, Z = 4, d calc = 2.338 g/cm3. It is demonstrated that the principal structural motif for these compounds is a chain coordination polymer, which consists of alternating molecules of the complexes. The results of a thermogravimetric study for the compounds are reported.  相似文献   

19.
The crystal structures of mono‐ and dinuclear CuII trifluoromethanesulfonate (triflate) complexes with benzyldipicolylamine (BDPA) are described. From equimolar amounts of Cu(triflate)2 and BDPA, a water‐bound CuII mononuclear complex, aqua(benzyldipicolylamine‐κ3N ,N′ ,N ′′)bis(trifluoromethanesulfonato‐κO )copper(II) tetrahydrofuran monosolvate, [Cu(CF3SO3)2(C19H19N3)(H2O)]·C4H8O, (I), and a triflate‐bridged CuII dinuclear complex, bis(μ‐trifluoromethanesulfonato‐κ2O :O ′)bis[(benzyldipicolylamine‐κ3N ,N′ ,N ′′)(trifluoromethanesulfonato‐κO )copper(II)], [Cu2(CF3SO3)4(C19H19N3)2], were synthesized. The presence of residual moisture in the reaction medium afforded water‐bound complex (I), whereas dinuclear complex (II) was synthesized from an anhydrous reaction medium. Single‐crystal X‐ray structure analysis reveals that the CuII centres adopt slightly distorted octahedral geometries in both complexes. The metal‐bound water molecule in (I) is involved in intermolecular O—H…O hydrogen bonds with triflate ligands and tetrahydrofuran solvent molecules. In (II), weak intermolecular C—H…F(triflate) and C—H…O(triflate) hydrogen bonds stabilize the crystal lattice. Complexes (I) and (II) were also characterized fully using FT–IR and UV–Vis spectroscopy, cyclic voltammetry and elemental analysis.  相似文献   

20.
The reaction of CuO'Bu with CO2, and iPr2NH in the presence of PPh3, gives the dialkylcarbamato complex [Cu(O2CNiPr2)(PPh3)2] ( 1 ). The CO2/R2NH system (R = Me, Et) in an appropriate organic medium reacts with Ag2O giving the corresponding N,N-dialkylcarbamato complexes of analytical formula [Ag(C2CNR2)] (R = Me, 2 ; R = Et, 3 ). The methyl derivative 2 was characterized by X-ray diffraction methods. Crystal data of 2 : for [Ag2(O2CNMe2)2], C6H12Ag2N2O4, mol. wt. 391.9; monoclinic, space group P21/c, a = 12.08(1), b = 3.797(2), c = 11.316(7) Å, β = 113.37(6)°, V = 476.3 Å3, Z = 2, Dc = 2.732 g cm?3; μ(MoKα) = 40.64 cm?1, F(000) = 376.0; R = 0.059, Rw = 0.067; g.o.f. 1.27. The structure consists of dinuclear [(Ag2OCNMe2)2] units with slightly distorted linearly two-coordinated Ag-atoms containing bridging carbamato groups to form a substantially planar eight-membered ring with an intra-annular Ag? Ag distance of 2.837(2) Å; the dinuclear units are further joined by Ag? O bonds to form an infinite array. Compound 3 , which is presumably dinuclear, as suggested by cryoscopic measurements in benzene, undergoes a structural fission with PPh3, giving the mononuclear triphenylphosphine derivative [Ag(O2CNEt2)(PPh3)2] ( 4 ). The amine-catalyzed conversion of Ag2O into Ag2CO3, in the presence of the iPr2NH/CO2 system, is also reported. Cl-Exchange from [AuCl(PPh3)] with [Ag(O2CNEt2)] ( 3 ) gives the first N,N-dialkylcarbamato complex of gold, namely [Au(O2CNEt2)(PPh3)] ( 5 ), which crystallizes in the monoclinic system: C23H25AuNO2P · 0.5 C7H16, mol. wt. 625.5, space group P21/c; a = 13.212(5), b = 12.25(1), c = 16.795(6) Å, β = 109.09(2)°, V = 2568(2) Å3, Z = 4, Dc, = 1.618 g cm?3; μ(AgKα) = 31.40 cm?1, F(000) = 1236.0; R = 0.058; Rw = 0.064; g.o.f. 2.121. The compound contains two-coordinated Au-atom, namely to the P-atom and to the O-atom of the monodentate carbamato group, the P? Au? O bond angle being 174.7(3)°. The reaction with MeI showed these compounds to react predominantly at the carbamato O-atom giving the corresponding urethanes R2NCO2Me. Evidence was gathered for the transient coordination of CO to Ag in 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号