首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of [CpRu(CH3CN)3]PF6 with the bidentate ligands L-L=1,2-bis(diphenylphosphino)ethane, dppe, and (1-diphenylarsino-2-diphenylphosphino)ethane, dpadppe, affords mononuclear or dinuclear complexes of formula [CpRu(η2-L-L)(CH3CN)]PF6, [{CpRu(CH3CN)2}2(μ-η1:1-L-L)](PF6)2 and [{CpRu(CH3CN)}2(μ-η1:1-L-L)2](PF6)2 (L-L=dppe, dpadppe). All of the compounds are characterized by microanalysis and NMR [1H and 31P{1H}] spectroscopy. The crystal structure of [{CpRu(CH3CN)2}2(μ-η1:1-dppe)](PF6)2 has been determined by X-ray diffraction analysis. The complex exhibits a dppe ligand bridging two CpRu(CH3CN)2 fragments.  相似文献   

2.

Abstract  

The cages [{La2(NCS)5(NCMe)6}2O]·MeCN and [{Eu2(NCS)5(NCMe)5}2O]·MeCN have been prepared by redox transmetallation between the lanthanoid metals and mercuric thiocyanate in acetonitrile. The structure of the former has a core of four La atoms bonded to a central oxygen atom. Two La atoms are nine coordinate being bonded to oxygen, four terminal MeCN ligands and four N-bridged thiocyanato ligands, whereas the other two are eight coordinate being bonded to oxygen, the four bridging thiocyanato ligands, two terminal acetonitrile molecules, and a terminal N-bonded thiocyanate ion. In the Eu complex, there is a similar core of four Ln atoms bound to a central oxygen atom, but all Eu atoms are eight coordinate, and have four N-bridged thiocyanate ligands. Two have three MeCN ligands, whilst the other two have one terminal NCS and two acetonitrile ligands.  相似文献   

3.
采用模板法合成了2个异双核三价稀土席夫碱配合物: {[Ce1.5Sm0.5(clapi)]2}·2CH3CN(1)和{[La1.5Sm0.5(clapi)]2}·2CH3CN(2). 通过元素分析和红外光谱对这两个配合物进行了表征. 测定了配合物1的晶体结构, 结果表明配合物1属于三斜晶系, P1空间群. 晶胞参数: a=1.067056(2) nm, b=1.14700(3) nm, c=1.38734(3) nm, α=109.4240(10)°, β=98.0520(10)°, γ=105.8050(10)°, Z=1, Dc=1.650 Mg/m3, F(000)=740, R1=0.0582, wR2=0.1184[I>2σ(I)]. 研究了配合物1和2在CH2Cl2中的室温荧光性质, 2个配合物都显示了Sm3+较弱的红色荧光, 研究结果证明荧光惰性稀土离子能够影响稀土配合物的荧光性质.  相似文献   

4.
Reactions of Pd8 strings supported by meso-Ph2PCH2P(Ph)CH2P(Ph)CH2PPh2 (meso-dpmppm) ligands, [Pd8(meso-dpmppm)4(L)2]4+ (L=CH3CN ( 1 ), XylNC ( 2 )) with C60 resulted in the exclusive formation of unprecedented metal-chain-wired C60 bucky balls, [{Pd4(meso-dpmppm)2(L)}2(C60)]4+ (L=CH3CN ( 11 ), XylNC ( 12 )), in which a C60 fullerene is trapped in the central Pd–Pd junction, as unambiguously established by spectroscopic, X-ray crystallographic, and theoretical techniques. The similar reaction of Pd8 strings supported by rac-dpmppm, [Pd8(rac-dpmppm)4(CH3CN)2]4+ ( 3 ) also afforded a racemic mixture of [{Pd4((R*,R*)-dpmppm)2(CH3CN)}2(C60)]4+ ( 13 ) without scrambling the Pd4 fragments with (R,R)- and (S,S)-dpmppm ligands. Consequently, those of enantiopure chiral Pd8 strings, [Pd8((R*,R*)-dpmppm)4(CH3CN)2]4+, certainly afforded chiral bucky balls of [{Pd4((R*,R*)-dpmppm)2(CH3CN)}2(C60)]4+ ( 13 RR and 13 SS ), that exhibit mirror-image circular dichroism spectra. The reactions of 1 and 2 were also applied for trapping a C70 fullerene to give 2 : 1 adducts of [{Pd4(meso-dpmppm)2(L)}2(C70)]4+ (L=CH3CN ( 21 ), XylNC ( 22 )). These results provide useful information for creating a platform to develop dimensionally and chirality controlled metal–carbon nanocomposite materials.  相似文献   

5.
Two lanthanide complexes with 2-fluorobenzoate (2-FBA) and 1,10-phenanthroline (phen) were synthesized and characterized by X-ray diffraction. The structure of each complex contains two non-equivalent binuclear molecules, [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2 and [Ln(2-FBA)3?·?phen]2 (Ln?=?Eu (1) and Sm (2)). In [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2, the Ln3+ is surrounded by eight atoms, five O atoms from five 2-FBA groups, one O atom from ethanol and two N atoms from phen ligand; 2-FBA groups coordinate Ln3+ with monodentate and bridging coordination modes. The polyhedron around Ln3+ is a distorted square-antiprism. In [Ln(2-FBA)3?·?phen]2, the Ln3+ is coordinated by nine atoms, seven O atoms from five 2-FBA groups and two N atoms of phen ligand; 2-FBA groups coordinate Ln3+ ion with chelating, bridging and chelating-bridging three coordination modes. The polyhedron around Ln3+ ion is a distorted, monocapped square-antiprism. The europium complex exhibits strong red fluorescence from 5D0?→?7F j ( j?=?1–4) transition emission of Eu3+.  相似文献   

6.
Formation thermodynamics of binary and ternary lanthanide(III) (Ln = La, Ce, Nd, Eu, Gd, Dy, Tm, Lu) complexes with 1,10-phenanthroline (phen) and the chloride ion have been studied by titration calorimetry and spectrophotometry in N,N-dimethyl-formamide (DMF) containing 0.2 mol-dm–3 (C2H5)4NClO4 as a constant ionic medium at 25°C. In the binary system with 1,10-phenanthroline, the Ln(phen)3+ complex is formed for all the lanthanide(III) ions examined. The reaction enthalpy and entropy values for the formation of Ln(phen)3+ decrease in the order La > Ce > Nd, then increase in the order Nd < Eu < Gd < Dy, and again decrease in the order Dy > Tm > Lu. The variation is explained in terms of the coordination structure of Ln(phen)3+ that changes from eight to seven coordination with decreasing ionic radius of the metal ion. In the ternary Ln3+-Cl-phen system, the formation of LnCl(phen)2+, LnCl2(phen)+, and LnCl3(phen) was established for cerium(III), neodymium(III), and thulium(III), and their formation constants, enthalpies, and entropies were obtained. The enthalpy and entropy values are also discussed from the structural point of view.  相似文献   

7.
The lanthanide selenidogermanates [{Eu(en)3}2(μ‐OH)2]Ge2Se6 ( 1 ), [{Ho(en)3}2(μ‐OH)2]Ge2Se6 ( 2 ), and [{Ho(dien)2}2(μ‐OH)2]Ge2Se6 ( 3 ) (en = ethylenediamine, dien = diethylenetriamine) were solvothermally prepared by the reactions of Eu2O3 (or Ho2O3), germanium, and selenium in en and dien solvents respectively. Compounds 1 – 3 are composed of selenidogermanate [Ge2Se6]4– anion and dinuclear lanthanide complex cation [{Ln(en)3}2(μ‐OH)2]4+ (Ln = Eu, Ho) or [{Ho(dien)2}2(μ‐OH)2]4+. The [Ge2Se6]4– anion is composed of two GeSe4 tetrahedra sharing a common edge. The dinuclear lanthanide complex cations are built up from two [Ln(en)3]3+ or [Ho(dien)2]3+ ions joined by two μ‐OH bridges. All lanthanide(III) ions are in eight‐coordinate environments forming distorted bicapped trigonal prisms. In 1 – 3 , three‐dimensional supramolecular networks of the anions and cations are formed by N–H ··· Se and N–H ··· O hydrogen bonds. To the best of our knowledge, 1 – 3 are the first examples of selenidogermanate salts with lanthanide complex counter cations.  相似文献   

8.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

9.
The preparation and characterization of a series of complexes of the Yb and Eu cations in the oxidation state II and III with the tetradentate N,O‐donor tripodal ligands (tris(2‐pyridylmethyl)amine (TPA), BPA? (HBPA=bis(2‐pyridylmethyl)(2‐hydroxybenzyl)amine), BPPA? (HBPPA=bis(2‐pyridylmethyl)(3.5‐di‐tert‐butyl‐2‐hydroxybenzyl)amine), and MPA2? (H2MPA=(2‐pyridylmethyl)bis(3.5‐di‐tert‐butyl‐2‐hydroxybenzyl)amine) is reported. The X‐ray crystal structures of the heteroleptic Ln2+ complexes [Ln(TPA)I2] (Ln=Eu, Yb) and [Yb(BPA)I(CH3CN)]2, of the Ln2+ homoleptic [Ln(TPA)2]I2 (Ln=Sm, Eu, Yb) and [Eu(BPA)2] complexes, and of the Ln3+ [Eu(BPPA)2]OTf and [Yb(MPA)2K(dme)2] (dme=dimethoxyethane) complexes have been determined. Cyclic voltammetry studies carried out on the bis‐ligand complexes of Eu3+ and Yb3+ show that the metal center reduction occurs at significantly lower potentials for the BPA? ligand as compared with the TPA ligand. This suggests that the more electron‐rich character of the BPA? ligand results in a higher reducing character of the lanthanide complexes of BPA? compared with those of TPA. The important differences in the stability and reactivity of the investigated complexes are probably due to the observed difference in redox potential. Preliminary reactivity studies show that whereas the bis‐TPA complexes of Eu2+ and Yb2+ do not show any reactivity with heteroallenes, the [Eu(BPA)2] complex reduces CS2 to afford the first example of a lanthanide trithiocarbonate complex.  相似文献   

10.
Synthesis and NMR. Spectra of Novel Lanthanide-Cobalt Sandwich Compounds The reaction of [(C5H5)Co{P(O)(OR)2}2{P(OH)(OR)2}] ( 3 , R = CH3, C2H5) with lanthanide(III) compounds yields the cationic trinuclear complexes [{(C5H5)Co[P(O)(OR)2]3}2Ln]X? ( 2 , R = CH3, C2H5; Ln = La, Eu, Pr; X = BF4, BPh4). According to thermogravimetric and NMR. studies these compounds do not contain additional coordinated water molecules. It is therefore supposed that the central lanthanide ion has a regular sixfold coordination of phosphoryl ligands. The 31P- and 1H-NMR. spectra of 2 (R = CH3; Ln = La, Eu, Pr) and 3 are discussed. It can be shown that the Fermi contact shift as well as the coordination shift make significant contributions to the observed lanthanide induced shift of the cyclopentadienyl signal.The dominating influence of the Fermi contact interaction on the 31P chemical shift is in accord with theoretical considerations and comparable experimental values. The temperature dependence of the proton chemical shifts of 2 (R = CH3; Ln = Eu) is also discussed.  相似文献   

11.
Treatment of N,N′‐bis(aryl)formamidines (ArFormH), N,N′‐bis(2,6‐difluorophenyl)formamidine (DFFormH) or N,N′‐bis(2,6‐diisopropylphenyl)formamidine (DippFormH), with europium metal in CH3CN is an efficient synthesis of the divalent complexes: [{Eu(DFForm)2(CH3CN)2}2] ( Eu1 ) or [Eu(DippForm)2(CH3CN)4] ( Eu2 ). The synthetic method was extended to ytterbium, but the metal required activation by addition of Hg0. With DFFormH in CH3CN, [{Yb(DFForm)2(CH3CN)}2] ( Yb1 ) was obtained in good yield, and [Yb(DFForm)2(thf)3] ( Yb3 ) was obtained from a synthesis in CH3CN/THF. Thus, this synthetic method completely circumvents the use of either salt metathesis, or redox transmetallation/protolysis (RTP) protocols to prepare divalent rare‐earth formamidinates. Heating Yb1 in PhMe/C6D6 resulted in decomposition to trivalent products, including one from a CH3CN activation process. For a synthetic comparison, divalent ytterbium DFForm and DippForm complexes were synthesised by RTP reactions between Yb0, Hg(R)2 (R=Ph, C6F5), and ArFormH in THF, leading to the isolation of either [Yb(DFForm)2(thf)3] ( Yb3 ), or the first five coordinate rare‐earth formamidinate complex [Yb(DippForm)2(thf)] ( Yb4 b ), and, from adjustment of the stoichiometry, trivalent [Yb(DFForm)3(thf)] ( Yb6 ). Oxidation of Yb3 with benzophenone (bp), or halogenating agents (TiCl4(thf)2, Ph3CCl, C2Cl6) gave [Yb(DFForm)3(bp)] or [Yb(DFForm)2Cl(thf)2], respectively. Furthermore, the structural chemistry of divalent ArForm complexes has been substantially broadened. Not only have the highest and lowest coordination numbers for divalent rare‐earth ArForm complexes been achieved in Eu2 and Yb4 b , respectively, but also dimeric Eu1 and Yb1 have highly unusual ArForm bridging coordination modes, either perpendicular μ‐1κ(N:N′):2κ(N:N′) in Eu1 , or the twisted μ‐1κ(N:N′):2κ(N′:F′) DFForm coordination in Yb1 , both unprecedented in divalent rare‐earth ArForm chemistry and in the wider divalent rare‐earth amidinate field.  相似文献   

12.
By self‐assembly of a Salamo‐type ligand H2L [H2L = 1,2‐bis(3‐methoxysalicylideneaminooxy)ethane] with Ni(OAc)2 · 4H2O, Ce(NO3)3 · 6H2O, and H2bdc (H2bdc = terephthalic acid), a novel NiII‐CeIII heterometallic complex, [{Ni(L)Ce(NO3)2(CH3OH)(DMF)}2(bdc)], was obtained. Two crystallographically equivalent [Ni(L)Ce(NO3)2(CH3OH)(DMF)] moieties lie in the inversion center, and are linked by one bdc2– ligand leading to a heterotetranuclear dimer, in which the carboxylato group bridges the NiII and CeIII atoms. Moreover, the photophysical properties of the NiII‐CeIII complex were studied.  相似文献   

13.
Uniform lanthanide orthophosphate LnPO4 (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO4 (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO4 (Ln=Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature. The possible formation mechanism for LnPO4 (Ln=La-Gd) nanorod bundles is proposed. Eu3+-doped LaPO4 and Tb3+-doped CePO4 samples were also prepared by using the same synthetic process, which exhibit an orange-red (Eu3+:5D0-7F1, 2, 3, 4) and green (Tb3+, 5D4-7F3, 4, 5, 6) emission, respectively.  相似文献   

14.
Lanthanide p-toluene sulphonic acid (ptsa) complexes were prepared for La, Pr, Nd, Sm, Eu, Dy, Ho, Er and Yb, and found to exist as Ln(ptsa)3. Conductivity studies of La(ptsa)3 in DMSO and DMF suggest 1:2 and, possibly, 1:1 electrolyte behaviour in these solvents, respectively. NMR lanthanide-induced chemical shifts (LIS) for aromatic protons in (ptsa)? and methyl protons in DMSO, were measured for all complexes as a function of the [Ln3+[DMSO] in a medium consisting of CCl4, DMSO, and CH3CN. Analysis of the LIS data suggests a change in (ptsa)? coordination round Ln3+ across the lanthanide series.  相似文献   

15.
DFT-D3/PBE0 and IR spectroscopy are employed to study the vibrational structure of europium(III) and lanthanum(III) methacrylates Ln(Macr)3 (Ln = Eu, La; Macr is the methacrylate anion, CH2CH(CH3)COO). The calculated geometric and vibrational characteristics are consistent with the experimental data. By means of the calculation of the Eu2(Macr)6·(H2O)4 complex the experimental IR spectrum is interpreted. The effect of isomorphic lanthanum substitution for the europium ion in the Eu2(Macr)6·(H2O)4 complex is studied theoretically. A mechanism is proposed for the effect of the vibrational structure on the optical properties (at the isomorphic replacement of the europium ion and temperature elevation).  相似文献   

16.
Summary The synergistic mixture comprising picrolonic acid (HPA) and benzo-15-crown-5 (B15C5) in chloroform has been used for the extraction of Ce(III), Eu(III) and Tm(III) as representatives of lanthanide(III) ions from pH 1-2 solutions having ionic strength of 0.1 mol. dm-3(K+/H+, Cl-). The composition of the extracted species has been determined as M(PA)3. nB15C5 where M is Ce, Eu and Tm and n=1 or 2. The influence of various anions and cations on the extraction of these ions has also been studied and only oxalate, cyanide and tartrate have some deleterious effect. The extraction equilibrium constants have been evaluated and discussed.  相似文献   

17.

The three-dimensional network of lanthanide (III) complexes with isophthalato (IPT) ligand, (Eu[C6H4(COO?)2-1,3](CH3COO?)(H2O)2}·H2O 1 and {Sm[C6H4(COO?)2-1,3](CH3COO?) (H2O)2} H2O 2, has been prepared by the hydro(solvo)thermal reaction of Eu(C1O4)3·6H2O or Sm(C1O4)3·6H2O, 1,3-dicyanobenzene and acetic acid in the presence of ethanol and H2O. In the reaction, 1,3-dicyanobenzene was hydrolyzed to give IPT ligand. Single crystal x-ray analysis revealed that crystals 1 and 2 are isomorphous with the isostructural {M[C6H4(COO?)2-1,3](CH3COO?)(H2O)2}·H2O unit. In 1 and 2, IPT acts as a bridging ligand to connect three adjacent metal atoms, forming a network like an undulating sheet paralleling the bc plane. The carboxylate from acetate bridges two adjacent metal atoms in a tridentate mode between the different sheets to extend the structure into a three-dimensional network.  相似文献   

18.
A flow-injection chemiluminescence (CL) method, based on the luminescent properties of the Ce(IV)-Na2SO3-lanthanide(III)-grepafloxacin system, was developed for the determination of grepafloxacin {1-cyclopropyl-6-fluoro-1,4-dihydro-5-methyl-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid}. La(III), Tb(III), and Eu(III) ions were tested as possible chemiluminescence sensitizers. The best results were achieved when Tb(III) was used as lanthanide ion, so the technique was optimised working with this ion. Under the optimum experimental conditions, the linear range was 0.05-2.00 μg ml−1 grepafloxacin, with a 0.01 μg ml−1 detection limit and 2.0% relative standard deviation (n=10). The proposed procedure has been applied to the determination of grepafloxacin in tablets and spiked human urine.  相似文献   

19.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

20.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号