首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Analytical letters》2012,45(4):418-425
A sensitive fluorescence assay for hepatitis B virus (HBV) DNA was developed based on the dissociation of bio-bar-code DNA probes from GoldMag-CS nanoparticles (NPs) and magnetic separation. In this method, the target sequence (HBV DNA) was recognized through sandwich hybridization by the catching probes and the detection probes. Catching probes were modified with biotins, and were specifically bound on streptavidin-coated 96-well microplates; detection probes were all attached on the GoldMag-CS nanoparticles, which also bound bio-bar-code strands with fluorescent tags. Bio-bar-codes were dissociated from the NPs by dithiothreitol (DTT) after DNA target recognition and magnetic separation, and then quantified. Streptavidin-coated 96-well microplates diminished the nonspecific binding of DNA-conjugated GoldMag-CS nanoparticles, thus lowering the background; and GoldMag-CS nanoparticles provided easy separation and significant signal amplification. Together, these two effects brought about the detection limit as low as 7.52 fM.  相似文献   

2.
J Wang  A N Kawde  A Erdem  M Salazar 《The Analyst》2001,126(11):2020-2024
Magnetic bead capture has been used for eliminating non-specific adsorption effects hampering label-free detection of DNA hybridization based on stripping potentiometric measurements of the target guanine at graphite electrodes. In particular, the efficient magnetic separation has been extremely useful for discriminating against unwanted constituents, including a large excess of co-existing mismatched and non-complementary oligomers, chromosomal DNA, RNA and proteins. The new protocol involves the attachment of biotinylated oligonucleotide probes onto streptavidin-coated magnetic beads, followed by the hybridization event, dissociation of the DNA hybrid from the beads, and potentiometric stripping measurements at a renewable graphite pencil electrode. Such coupling of magnetic hybridization surfaces with renewable graphite electrode transducers and label-free electrical detection results in a greatly simplified protocol and offers great promise for centralized and decentralized genetic testing. A new magnetic carbon-paste transducer, combining the solution-phase magnetic separation with an instantaneous magnetic collection of the bead-captured hybrid, is also described. The characterization, optimization and advantages of the genomagnetic label-free electrical protocol are illustrated below for assays of DNA sequences related to the breast-cancer BRCA1 gene.  相似文献   

3.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

4.
Wang J  Kawde AN 《The Analyst》2002,127(3):383-386
A new protocol is described for amplifying label-free electrochemical measurements of DNA hybridization based on the enhanced accumulation of purine nucleobases in the presence of copper ions . Such electrical DNA assays involve hybridization of the target to inosine-substituted oligonucleotide probes (captured on magnetic beads), acidic dipurinization of the hybrid DNA, and adsorptive chronopotentiometric stripping measurements of the free nucleobases in the presence of copper ions. Both amplified adenine and guanine peaks can be used for detecting the DNA hybridization. The dramatic signal amplification advantage of this type of detection has been combined with efficient magnetic removal of non-complementary DNA, use of microliter sample volumes and disposable transducers. Factors influencing the signal enhancement were assessed and optimized. A detection limit of 40 fmol (250 pg) was obtained with 10 min hybridization and 5 min adsorptive-accumulation times. The advantages of this procedure were demonstrated by its application in the detection of DNA segments related to the BRCA1 breast cancer gene. The copper enhancement holds great promise not only for the detection of DNA hybridization, but also for trace measurement of nucleic acids.  相似文献   

5.
Nanoparticle-based electrochemical DNA detection   总被引:2,自引:0,他引:2  
Joseph Wang   《Analytica chimica acta》2003,500(1-2):247-257
Nanoscale architectures of DNA-linked particle networks are attractive for electrical detection of DNA hybridization. This article reviews a variety of new nanoparticle/polynucleotide assemblies for advanced electrical detection of DNA sequences. Recent activity has led to innovative and powerful nanoparticle-based electrochemical DNA hybridization assays based on a variety of detection schemes. Such protocols rely on the use of colloidal gold tags, semiconductor quantum dot tracers, polymeric carrier (amplification) beads, or magnetic (separation) beads. Particularly useful have been protocols based on capturing of metal nanoparticle tracers followed by dissolution and anodic-stripping voltammetric measurement of the metal tag. Remarkable sensitivity is achieved by coupling particle-based amplification units and various amplification processes. The use of nanoparticle tracers for designing multi-target electrochemical coding protocols will also be documented.  相似文献   

6.
An ultrasensitive surface enhanced Raman scattering (SERS) method has been designed to selectively and sensitively detect lysozyme. The gold chip as the detection substrate, the aptamer‐based target‐triggering cascade multiple cycle amplification, and gold nanoparticles (AuNPs) bio‐barcode Raman probe enhancement on the gold substrate are employed to enhance the SERS signals. The cascade amplification process consists of the nicking enzyme signaling amplification (NESA), the strand displacement amplification (SDA), and the circular‐hairpin‐assisted exponential amplification reaction (HA‐EXPAR). With the involvement of an aptamer‐based probe, two amplification reaction templates, and a Raman probe, the whole circle amplification process is triggered by the target recognition of lysozyme. The products of the upstream cycle (NESA) could act as the “DNA trigger” of the downstream cycle (SDA and circular HA‐EXPAR) to generate further signal amplification, resulting in the immobility of abundant AuNPs Raman probes on the gold substrate. “Hot spots” are produced between the Raman probe and the gold film, leading to significant SERS enhancement. This detection method exhibits excellent specificity and sensitivity towards lysozyme with a detection limit of 1.0×10?15 M . Moreover, the practical determination of lysozyme in human serum demonstrates the feasibility of this SERS approach in the analysis of a variety of biological specimens.  相似文献   

7.
Sun Y  Cai S  Cao Z  Lau C  Lu J 《The Analyst》2011,136(20):4144-4151
A novel approach is proposed in this study for the development of an aptameric assay system for protein based on non-stripping gold nanoparticles (NPs)-triggered chemiluminescence (CL) upon target binding. The strategy chiefly depends on the formation of a sandwich-type immunocomplex among the capture antibody immobilized on the polystyrene microwells, target protein and aptamer-functionalized gold NPs. Introduction of target protein into the assay system leads to the attachment of gold NPs onto the surface of the microwells and thus the assembled gold NPs could trigger the reaction between luminol and AgNO(3) with a CL emission. Further signal amplification was achieved by a simple gold metal catalytic deposition onto the gold NPs. Such an amplified CL transduction allowed for the detection of model target IgE down to the 50 fM, which is better than most existing aptameric methods for IgE detection. This new protocol also provided a good capability in discriminating IgE from nontarget proteins such as IgG, IgA, IgM and interferon. The practical application of the proposed gold NPs-based immunoassay was successfully carried out for the determination of IgE in 35 human serum samples. Overall, the proposed assay system exhibits excellent analytical characteristics (e.g., a detection limit on the attomolar scale and a linear dynamic range of 4 orders of magnitude), and it is also straightforward to adapt this strategy to detect a spectrum of other proteins by using different aptamers. This new CL strategy might create a novel technology for developing simple biosensors in the sensitive and selective detection of target protein in a variety of clinical, environmental and biodefense applications.  相似文献   

8.
A highly sensitive telomerase detection method that combines telomeric repeat amplification protocol (TRAP) and magnetic beads based electrochemiluminescence (ECL) assay has been developed. Briefly, telomerase recognizes biotinylated telomerase synthesis primer (B-TS) and synthesizes extension products, which then serve as the templates for PCR amplification using B-TS as the forward primer and tris-(2′2′-bipyridyl) ruthenium (TBR) labeled ACX (TBR-ACX) as the reversed primer. The amplified product is captured on streptavidin-coated paramagnetic beads and detected by ECL. Telomerase positive HeLa cells were used to validate the feasibility of the method. The experimental results showed down to 10 cancer cells can be detected easily. The method is a useful tool for telomerase activity analysis due to its sensitivity, rapidity, safety, high throughput, and low cost. It can be used for screening a large amount of clinical samples.  相似文献   

9.
DNA ligases are essential enzymes in all cells and have been proposed as targets for novel antibiotics. Efficient DNA ligase activity assays are thus required for applications in biomedical research. Here we present an enzyme-linked electrochemical assay based on two terminally tagged probes forming a nicked junction upon hybridization with a template DNA. Nicked DNA bearing a 5' biotin tag is immobilized on the surface of streptavidin-coated magnetic beads, and ligated product is detected via a 3' digoxigenin tag recognized by monoclonal antibody-alkaline phosphatase conjugate. Enzymatic conversion of napht-1-yl phosphate to napht-1-ol enables sensitive detection of the voltammetric signal on a pyrolytic graphite electrode. The technique was tested under optimal conditions and various situations limiting or precluding the ligation reaction (such as DNA substrates lacking 5′-phosphate or containing a base mismatch at the nick junction, or application of incompatible cofactor), and utilized for the analysis of the nick-joining activity of a range of recombinant Escherichia coli DNA ligase constructs. The novel technique provides a fast, versatile, specific, and sensitive electrochemical assay of DNA ligase activity.
Figure
Enzyme-linked electrochemical detection of a ligated DNA strand using magnetic beads. Anti-digoxigenin antibody conjugate with alkaline phosphatase (ALP) is bound to digoxigenin label of the ligated product immobilized at streptavidin-coated magnetic beads via biotin tag on its opposite end. Then substrate for ALP (napht-1-yl phosphate) is added and enzymatically converted to napht-1-ol, an electroactive indicator, which is subsequently detected electrochemically at a carbon electrode  相似文献   

10.
An efficient and highly sensitive chemiluminescence (CL) technique is proposed in the current study for detection of low levels of human serum albumin (HSA). Chemiluminescence (CL) produced during interaction between fluoresceinyl cypridina luciferin analog (FCLA)-1O2 can be modified with the presence of HSA. The conventional CL technique uses a quenching effect of HSA for its quantitative measurement. We are reporting here that the CL intensity can be enhanced, rather than quenched, by the addition of HSA. The CL signal can be linearly correlated with the HSA concentration over a clinically interesting range of 5 x 10(-9) - 8 x 10(-8) mol L(-1), with a detection limit of 2.5 x 10(-9) mol L(-1). The determination result was consistent with that obtained from conventional methods. One possible mechanism of HSA detection technique using CL enhancement approach is discussed. Intermolecular energy transfer in chemiluminescence systems and changes of microenvironment are likely to be contributors of the CL enhancement with HSA.  相似文献   

11.
12.
We report herein an exonuclease-assisted aptamer-based target recycling amplification strategy for sensitive and selective chemiluminescence (CL) determination of adenosine. This aptasensor is based on target-induced release of aptamers from capture probes immobilized on the 96-well plate surface, and thus leading to a decreased hybridization with gold nanoparticle-functionalized reporter sequences followed by a CL signal. The introduction of exonuclease III catalyzes the stepwise removal of mononucleotides from 3′-hydroxyl termini of duplex DNAs of aptamers, liberating the adenosine. Therefore, a single copy of target adenosine can lead to the release and digestion of numerous aptamer strands from the 96-well plates and ultimately an enhanced sensitivity is achieved. Experimental results revealed that the exonuclease-assisted recycling strategy enabled the monitoring of adenosine with wide working ranges and low detection limits (LOD: 0.5 nM). This new CL strategy might create a novel technology for the detection of various targets and could find wide applications in the environmental and biomedical fields.  相似文献   

13.
Lee TM  Cai H  Hsing IM 《The Analyst》2005,130(3):364-369
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications.  相似文献   

14.
15.
We have developed a new class of surface-enhanced Raman scattering beacons (SERS beacons) that can be turned on and off by long-range plasmonic coupling, induced by biomolecular recognition and binding events. The beacons are based on colloidal gold nanocrystals in two sizes (40 and 60 nm) and are prepared by spectral encoding with a Raman reporter molecule, functionalized with thiolated DNA probes, and stabilized and protected by low molecular weight poly(ethylene glycol)s (PEGs). The results show the SERS signal intensities increase by 40-200-fold when the nanoparticle beacons are activated by plasmonic coupling, much higher than the bright-to-dark intensity ratios reported for traditional molecular beacons. Multivalent gold nanoparticles also have exquisite specificity and are able to recognize single-base mismatches or mutations. This class of SERS nanoparticle beacons has novel mechanisms for molecular detection and signal amplification, and its long-range coupling nature raises new opportunities in developing plasmonic probes to detect proteins, cells, and intact viruses.  相似文献   

16.
Peng Q  Cao Z  Lau C  Kai M  Lu J 《The Analyst》2011,136(1):140-147
We report on a highly sensitive aptameric assay system for the determination of IgE, where a special chemiluminescence (CL) reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), acts as the signaling molecule and polystyrene beads as the amplification platform. Briefly, a "sandwich-type" detection strategy is employed in our design, where magnetic beads functionalized with a capture antibody were reacted with the target protein IgE, and then sandwiched with the aptamer-barcodes which were prepared by assembling polystyrene beads with IgE aptamer. The target immunoreaction event could be sensitively detected via an instantaneous derivatization reaction between TMPG and the guanine (G) nucleotides within the aptamer-barcodes to form an unstable CL intermediate for the generation of light. Further signal amplification is achieved by extending the G nucleotide-rich domain on the aptamer backbone for second amplification. Such simple amplified CL transduction allows the detection of IgE down to the 4.6 pM level, which is better than most previous aptameric methods for IgE detection. This new protocol also provides a good capability in discriminating IgE from nontarget proteins such as IgG, IgA, IgM, interferon and thrombin. The practical application of the proposed aptamer-barcode based immunoassay was successfully carried out for the determination of IgE in 20 human serum samples. It is straightforward to adapt this strategy to detect a spectrum of other proteins by using different aptamers, thus this method may offer a new direction in designing high-performance CL aptasensors for early diagnoses of diseases.  相似文献   

17.
A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subse-quent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolu-tion of them in an acidic solution and the indirect determination of the dissolved Ag ions by anodic stripping voltamrnetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample, The method was evaluated by means of a non-competitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0. 2 ng/mL. The high performance of the method is related to the sensitive ASV determination of silver( I ) at a car-bon fiber microelectrode and to the release of a large number of Ag^ ions from each silver shell anchored on the analyte (goat IgG).  相似文献   

18.
Three different methods for the amplified detection of a single-base mismatch in DNA are described using microgravimetric quartz-crystal-microbalance as transduction means. All methods involve the primary incorporation of a biotinylated base complementary to the mutation site in the analyzed double-stranded primer/DNA assembly. The double-stranded assembly is formed between 25 complementary bases of the probe DNA assembled on the Au-quartz crystal and the target DNA. One method of amplification includes the association of avidin- and biotin-labeled liposomes to the sensing interface. The second method of amplified detection of the base mismatch includes the association of an Au-nanoparticle-avidin conjugate to the sensing interface, and the secondary Au-nanoparticle-catalyzed deposition of gold on the particles. The third amplification route includes the binding of the avidin-alkaline phosphatase biocatalytic conjugate to the double-stranded surface followed by the oxidative hydrolysis of 5-bromo-4-chloro-3-indolyl phosphate to the insoluble product indigo derivative that precipitates on the transducer. Comparison of the three amplification routes reveals that the catalytic deposition of gold on the Au-nanoparticle/avidin conjugate is the most sensitive method, and the single-base mismatch in the analyzed DNA is detected with a sensitivity that corresponds to 3x10(-16) M.  相似文献   

19.
Ruping Liu  Juntao Liu  Mixia Wang  Jinping Luo 《Talanta》2010,81(3):1016-14792
In this paper, a simple, rapid and low-cost method for the high-sensitivity detection of brain natriuretic peptide (BNP) was developed, which adopted three amplification steps: (a) biotin-streptavidin amplification; (b) micro-magnetic probe amplification; (c) HRP (horseradish peroxidase) signal amplification. In the present strategy, the streptavidin-coated micro-magnetic particles (MMPs) were first conjugated with biotin-labeled capture antibody via the biotin-streptavidin interaction, which formed bio-functional micro-magnetic probes. Then, the analyte (antigen) is sandwiched by HRP-labeled antibody and capture antibody bound to MMPs. Finally, the HRP at the surface of sandwich structures catalytically oxidized the substrate and generated optical signals that reflected the amount of the target BNP. The influence of some important parameters such as the size of magnetic particles, the working concentration of HRP-labeled BNP antibody, the stability of magnetic probes, and the assay medium of serum BNP, etc. on the detection ability of present method was investigated in details. It is found that the detection limit of the proposed method could reach 10 pg/mL for BNP, which is much lower than that of sandwich-type ELISA. Furthermore, this detection time for the proposed method just takes about 30 min (two reaction steps and one wash step), which is faster than that of conventional sandwich-type ELISA (taking about 4 h, three reaction steps and three wash steps). Inspired by these advantages, it is expected that this method can probably be applicable to the detection of other hormones and tumor markers that are present in only low concentrations within the human body.  相似文献   

20.
A lateral flow test strip assay, enabling sensitive detection of DNA specific to the foodborne pathogen E. coli O157:H7, is described. The use of LNA-conjugated gold nanoparticle probes, along with signal amplification protocols, results in minimum detectable concentrations of ~0.4 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号