首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Anab initio study of the relative stability for the states2 A 1g and2 E g of C2H 6 + has been carried out. The results of the Open Shell Restricted Hartree-Fock calculations lead to assign the2 A 1 g as the ground state of the molecule in agreement with previous SCF calculations.The correlation energy associated to both states has been calculated within the correlation hole model and the results, contrary to those obtained from Configuration Interaction calculations, do not alter qualitatively the conclusions from SCF.  相似文献   

2.
Argon/benzene samples were condensed at 12 K with continuous argon resonance radiation. Laser excitation at 421 nm produced a weak emission with structure at 19770, 19140 and 18290 cm?1, assigned to the 2A2u2E1g emission of C6H6+. Observation of 630 and 1480 cm?1 intervals for the vibrations v18 (e2g) and v6 (e2g), respectively, supports this assignment.  相似文献   

3.
The target complexes, bis{(E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐oxopiperidinium} butanedioate, 2C27H36N3O+·C4H4O42−, (II), and bis{(E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐oxopiperidinium} decanedioate, 2C27H36N3O+·C10H16O42−, (III), were obtained by solvent‐mediated crystallization of the active pharmaceutical ingredient (API) (E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐piperidone and pharmaceutically acceptable dicarboxylic (succinic and sebacic) acids from ethanol solution. They have been characterized by melting point, IR spectroscopy and single‐crystal X‐ray diffraction. For the sake of comparison, the structure of the starting API, (E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐piperidone methanol monosolvate, C27H35N3O·CH4O, (I), has also been studied. Compounds (II) and (III) represent salts containing H‐shaped centrosymmetric hydrogen‐bonded synthons, which are built from two parallel piperidinium cations and a bridging dicarboxylate dianion. In both (II) and (III), the dicarboxylate dianion resides on an inversion centre. The two cations and dianion within the H‐shaped synthon are linked by two strong intermolecular N+—H...OOC hydrogen bonds. The crystal structure of (II) includes two crystallographically independent formula units, A and B. The cation geometries of units A and B are different. The main N—C6H4—C=C—C(=O)—C=C—C6H4—N backbone of cation A has a C‐shaped conformation, while that of cation B adopts an S‐shaped conformation. The same main backbone of the cation in (III) is practically planar. In the crystal structures of both (II) and (III), intermolecular N+—H...O=C hydrogen bonds between different H‐shaped synthons further consolidate the crystal packing, forming columns in the [100] and [10] directions, respectively. Salts (II) and (III) possess increased aqueous solubility compared with the original API and thus enhance the bioavailability of the API.  相似文献   

4.
Double excitations to 4Eg and 4A1g states in manganese pairs of KMgF3:Mn2+ have been studied spectroscopically. Three prominent sharp bands are observed in the low temperature absorption spectrum. These bands are displaced by about 400–500 cm?1 to higher energies from the expected electronic origins. It is proposed that the observed pair transitions gain their intensity through a vibronically induced exchange mechanism. With this mechanism the symmetric double excitations 6A1g6A1g4Egu4Egu, 4Egv4Egv and 4A1g4A1g become allowed in addition to the transition 6A1g6A1g4Egu4A1g. Analogy to the spectrum of the linear dinuclear chromium complex [(NH3)5CrOCr(NH3)5]4+, where the same mechanism has been postulated, is demonstrated.  相似文献   

5.
Ab initio calculations have been performed to study on the molecular structures and the vibrational levels of the low-lying ionic states (2B2u,2Ag,2B2g,2B3u,2Au,2B1g,2B1u, and2B3g) of tetrafluoroethylene. The equilibrium molecular structures and vibrational modes of these states are presented. The theoretical ionization intensity curves including the vibrational structures of the low-lying eight ionic states are also presented and compared with the photoelectron spectrum. Some new assignments of the photoelectron spectra are proposed.  相似文献   

6.
Reexamination of the phosphorescence of Ba2Pt2(H2P2O5)4 reveals that the ≈10 K spectrum is a superposition of two electronic transitions [3A2u(Eu,A1u → A1g] separated by ≈40 cm?1. Each band displays a prominent 110 cm?1 vibrational progression. Franck-Condon analysis yields a ≈0.25 Å distortion of the PtPt bond in the excited states, interpreted as a contraction.  相似文献   

7.
We explore the workability of a parallelized algorithm of time‐dependent discrete variable representation (TDDVR) methodology formulated by involving “classical” trajectories on each DOF of a multi‐mode multi‐state Hamiltonian to reproduce the population dynamics, photoabsorption spectra and nuclear dynamics of the benzene radical cation. To perform such dynamics, we have used a realistic model Hamiltonian consists of five lowest electronic states (X2E1g, B2E2g, C2A2u, D2E1u, and E2B2u) which are interconnected through several conical intersections with nine vibrational modes. The calculated nuclear dynamics and photoabsorption spectra with the advent of our parallelized TDDVR approach show excellent agreement with the results obtained by multiconfiguration time‐dependent Hartree method and experimental findings, respectively. The major focus of this article is to demonstrate how the “classical” trajectories for the different modes and the “classical” energy functional for those modes on each surface can enlight the time‐dependent feature of nuclear density and its' nodal structure. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
Abstract –The 1Ag?1Bu+ electronic absorption band and the vibronically coupled, C=C stretching Raman lines in the 1Ag? and 21Ag? states were recorded for spheroidene free in nonpolar and polar solvents as well as for spheroidene bound to the LH1 and LH2 complexes of Rhodobacter sphaeroides 2.4.1. The 1Bu+ energy exhibited a linear dependence on R(n) = (n2 - 1)/(n2+ 2) in both nonpolar and polar solvents; the line for polar solvents had a gentler slope and crossed the line for nonpolar solvents at R(n) = 0.3. The above characteristic of polar solvents was ascribed to the electric field generated by fluctuation of the solvent permanent dipoles; it stabilizes the 1Bu+ energy and reduces the polarizability of the solvent. The vibronically coupled, C=C stretching frequencies in the 1Ag? and 21Ag? states [ν(Ag) and [ν(2Ag)] also showed similar dependence on R(n), which is explained in terms of vibronic coupling among the 1Ag?, 21Ag? and 31Ag? states. The environment of spheroidene in the LH2 and LH1 complexes was assessed on the basis of the 1Bu+ energy and the ν(Ag) and [ν(2Ag) frequencies: Spheroidene in the LH2 complex is located in an environment with high polarizability, while spheroidene in the LH1 complex is located in an environment with lower polarizability.  相似文献   

9.
This study investigated the characteristics of an atmospheric pressure air-glow discharge with a liquid cathode. Distilled water was utilized as the cathode. The electric field strength, gas temperature as well as the emission intensity of some N2(C3Πu → B3Πg) and OH (A2Σ+ → X2Π) bands were measured at a discharge current ranging from 15 to 50 mA. Based upon the data obtained, the reduced electric field strength, E/N, and effective vibrational temperatures for N2(C3Πu, X1Σ g + ) and OH (A2Σ+) were examined. The electron energy distribution function (EEDF) and some electron parameters (average energy, electron density and rate coefficients) were obtained based on a numerical solution of the Boltzmann kinetic equation. The result showed that the EEDF was not in equilibrium and the effective vibrational temperatures for N2(C3Πu, X1Σ g + ) were essentially higher than the gas temperatures.  相似文献   

10.
The samples of dibarium magnesium orthoborate Ba2Mg(BO3)2 were synthesized by solid-state reaction. The X-ray diffraction (XRD) patterns and Raman spectra of the samples were collected. Electronic structure and vibrational spectroscopy of Ba2Mg(BO3)2 were systematically investigated by first principle calculation. A direct band gap of 4.4 eV was obtained from the calculated electronic structure results. The top valence band is constructed from O 2p states and the low conduction band mainly consists of Ba 5d states. Raman spectra for Ba2Mg(BO3)2 polycrystalline were obtained at ambient temperature. The factor group analysis results show the total lattice modes are 5Eu + 4A2u + 5Eg + 4A1g + 1A2g + 1A1u, of which 5Eg + 4A1g are Raman-active. Furthermore, we obtained the Raman active vibrational modes as well as their eigenfrequencies using first-principle calculation. With the assistance of the first-principle calculation and factor group analysis results, Raman bands of Ba2Mg(BO3)2 were assigned as Eg (42 cm−1), A1g (85 cm−1), Eg (156 cm−1), Eg (237 cm−1), A1g (286 cm−1), Eg (564 cm−1), A1g (761 cm−1), A1g (909 cm−1), Eg (1165 cm−1). The strongest band at 928 cm−1 in the experimental spectrum is assigned to totally symmetric stretching mode of the BO3 units.  相似文献   

11.
Multireference perturbation theory with complete active space self-consistent field (CASSCF) reference functions is applied to the study of the valence π→π* excited states of 1,3-butadiene, 1,3,5-hexatriene, 1,3,5,7-octatetraene, and 1,3,5,7,9-decapentaene. Our focus was put on determining the nature of the two lowest-lying singlet excited states, 11Bu+ and 21Ag, and their ordering. The 11Bu+ state is a singly excited state with an ionic nature originating from the HOMO→LUMO one-electron transition while the covalent 21Ag state is the doubly excited state which comes mainly from the (HOMO)2→(LUMO)2 transition. The active-space and basis-set effects are taken into account to estimate the excitation energies of larger polyenes. For butadiene, the 11Bu+ state is calculated to be slightly lower by 0.1 eV than the doubly excited 21Ag state at the ground-state equilibrium geometry. For hexatriene, our calculations predict the two states to be virtually degenerate. Octatetraene is the first polyene for which we predict that the 21Ag state is the lowest excited singlet state at the ground-state geometry. The present theory also indicates that the 21Ag state lies clearly below the 11Bu+ state in decapentaene with the energy gap of 0.4 eV. The 0–0 transition and the emission energies are also calculated using the planar C2h relaxed excited-state geometries. The covalent 21Ag state is much more sensitive to the geometry variation than is the ionic 11Bu+ state, which places the 21Ag state significantly below the 11Bu+ state at the relaxed geometry. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 157–175, 1998  相似文献   

12.
The ground state and the first few excited states of an MnO69? cluster are calculated in the unrestricted Hartree–Fock model. The state ordering is 5B1 g, 5A1 g, 5B2 g, and 5Eg as can be expected from simpler models. Consistent with the results by the same method for copper complexes, we obtain dd transition energies about one half or less of the experimental energies. The charge transfer spectrum is subject to a large spin polarization in the sense that the lowest charge transfer state (5Eu) has five unpaired spins on Mn.  相似文献   

13.
The vibrational, rotational, and centrifugal constants are calculated for the B 1Π u , C 1Π u , (1) 1Π g , and (2) electronic states of a 85Rb2 molecule. The calculations are based on the semi-empirical potential curves obtained in this work. The results from calculating the molecular constants are compared with experimental data. The Franck-Condon factors and R v′v″ centroids are calculated for the electronic transitions B 1Π u -X 1Σ g +, C 1Π u -X 1Σ g +, C 1Π u -(1) 1Π g , and C 1Π u -(2) 1Σ g +.  相似文献   

14.
The H2 interaction with the Pd dimer and trimer were studied using multiconfigurational self-consistent field (MC-SCF) calculations with the relativistic effective core potential (RECP); the correlation energy correction was included in the extended multireference configuration interaction (MRCI), variational and perturbative to second order. Here, we considered the Pd2 first six states: 3Σ+u, 1Σ+g, 3Πg, 3Δxy, 1Σ+u, and 3Σ+g. For them, the four geometrical approaches included were the side-on H2 toward Pd2, for the hydrogen molecule in and out the Pd dimer plane; the perpendicular end-on H2 toward Pd2; and the perpendicular end-on Pd2 to H2. The Pd2 ground state is 3Σ+u, which only captures H2 in the C2v end-on approach, softly relaxing the H(SINGLE BOND)H bond. The closed-shell 1Σ+g captures the H2 molecule in all the approaches considered: The side-on approach of this state presents deep wells and relaxes the H(SINGLE BOND)H bond, and the end-on approach captures H2 with a relatively longer H(SINGLE BOND)H distance and also a deep well. The 3Πg state was the only one which did not capture H2. For the triangular Pd3 clusters, H2 was approached in the C2v symmetry in and out of the Pd3 plane. In the triangular case, H2 was absorbed in both spin states, with deep wells and relaxing the H(SINGLE BOND)H distance. The linear Pd3 singlet and triplet states capture outside of the Pd3 and break the H(SINGLE BOND)H bond. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Preparation, Vibrational Spectra, and Normal Coordinate Analysis of Hexachlororhenate(V) and Crystal Structure of [P(C6H5)4][ReCl6] By oxidation of A2[ReCl6], A = [(n-C4H9)4N]+, [P(C6H5)4]+, with Cl2 in dichloromethane/trifluoracetic acid A[ReCl6] is formed. [P(C6H5)4][ReCl6] crystallizes with tetragonal symmetry, space group P4/n-C, a = 12.967(4), c = 7.6992(8) Å, Z = 2. The octahedral complexion [ReCl6]? is compressed (C4v) with the bond lengths, axial Re? Cl1 = 2.28 and Re? Cl3 = 2.24 Å, equatorial Re? Cl2 = 2.31 Å. The infrared active antisymmetric Re? Cl stretching vibration is split into v3 = 346 an v3 = 326 cm?1. The assignment of all IR and Raman modes is confirmed by a normal coordinate analysis. The different valence force constants, fd(ReCl1) = 2.09, fd(ReCl3) = 2.10, fd(ReCl2) = 1.88 mdyn/ Å result from the distortion of the octahedron. On excitation with the Ar laser line 514.5 nm a resonance Raman spectrum is observed, showing 8 overtones of v′(A1) = 382 cm?1, from which the harmonic frequency ω1 = 382.1 cm?1, the anharmonicity constant X11 = ?0.76 cm?1, and the maximum bond dissociation energy of the [ReCl6]? ion to be 138 kcal/mol, are calculated. The vibrational fine structure of the intraconfigurational transitions in the near infrared has been resolved by measuring the absorption spectrum of [(n-C4H9)4N][ReCl6] at low temperature (10 K), resulting in the assignment of the following electronic origins: Γ3(3T1g) → Γ4(3T1g): 7 512, Γ3(3T1g) → Γ1(3T1g): 7 624 and Γ3(3T1g) → Γ5(1T2g), Γ3(1Eg): 8 368 cm?1.  相似文献   

16.
Making use of the perturbation formulae for 3d1 ions (Ti3+ and V4+) under orthorhombically compressed octahedra, the spin Hamiltonian parameters (g factors: gx, gy, gz and hyperfine structure constants: Ax, Ay, Az) and local structures of the 3d1 impurity centres C1, C2, and C3 in KTiOPO4 crystals are theoretically analyzed in a consistent way. The remarkable local distortions (i.e., the relative axial compression ratios 11.2%, 7.0%, and 5.5% along Z axis and the relative planar bond length variation ratios 15.9%, 7.0%, and 6.0%) are obtained for the [Ti2O6]9− cluster on Ti2 site and [VO6]8− clusters on Ti1 and Ti2 sites, respectively, in view of the Jahn–Teller effect. The above local orthorhombic distortion parameters in the impurity centres are found to be more significant than the host Ti1 and Ti2 sites in pure KTiOPO4. The sequences (C1 > C2 > C3) of the local orthorhombic distortion parameters ρ and τ are in accordance with those of the axial and perpendicular anisotropies Δg and δg of g factors, respectively.  相似文献   

17.
Reaction of [Ni(dppe)Cl2/Br2] with AgOTf in CH2Cl2 medium following ligand addition leads to [Ni(dppe)(OSO2CF3)2] and then [Ni(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p–R–C6H4–N=N–C3H2–NN-1–R′,(1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion]. 31P{1H}-NMR confirm that stable bis-chelated square planar Ni(II) azoimine–dppe complex formation with one sharp peaks. The 1H NMR spectral measurements suggest azoimine link is present with lot of phenyl protons in the aromatic region. Considering all the moities there are a lot of different carbon atoms in the molecule which gives many different peaks in the 13C(1H)-NMR spectrum. In the 1H-1H COSY spectrum in the present complexes and contour peaks in the 1H-13C-HMQC spectrum in the present complexes, assign the solution structure and stereoretentive conformation in each complexes.  相似文献   

18.
[Au(C6F5)(tht)], which on reaction with P, O, S-coordinating phosphines in CH2Cl2 medium leads to [Au(C6F5)(X)] [X = PPh3 H, (1a), oMe, (1b), pMe, (1c), mMe, (1d), AsPh3 (2), OPPh3 (3), SPPh3 (4), dppm, dppe, dppa = diphenylphosphino-methane,-ethane,-ammine(5, 6, 7), TPA = 135-tetraaza-7-phosphino adamentane(8), Py4H (9a), 4Bu (9b), 4Ac (9c), tht = tetrahydrothiophen, C6F5 is the pentafluorophenyl ring]. The maximum molecular peak of the corresponding molecule is observed in the ESI mass spectrum. I.r. spectra of the complexes show –C = C– and C6F5 stretching near at 1610 and 1510, 955, 800 cm−1. The 1H-n.m.r. spectra as well as 31P- (1H)n.m.r. suggest solution stereochemistry, proton movement, phosphorus proton interaction. 13C-n.m.r. spectrum reflect the carbon skeleton in the molecule. In the 1H–1H COSY spectrum of the present complexes and contour peaks in the 1H–13C-HMQC spectrum, assign the solution structure and stereoretentive conformation in each step.  相似文献   

19.
《Chemical physics letters》1999,291(1-2):75-81
The fluorescence spectrum of all-trans-β-carotene was recorded at 170 K. The 1Bu+  1Ag fluorescence exhibited clear vibrational structures constituting a mirror image with those of the 1Bu+  1Ag absorption, and the deconvolution of the entire spectrum identified the 2Ag(0)  1Ag(0) transition at 14 500 cm−1. The displacements of the 1Bu+ and 2Ag potential minima along ν1 and ν2 (the CC stretching and C–C stretching normal coordinates, respectively) were determined to be 1.2 and 0.9, and 1.6 and 1.5, respectively. Thus, much larger potential displacements in the 2Ag state than in the 1Bu+ state have been shown.  相似文献   

20.
Ab initio LCAO SCF MO calculations are carried out on planar Co-porphine with a basis set of roughly double zeta quality for Co and N and of single zeta quality for C and H. The net charge on Co and N and the overlap population between them are 1.78, ?0.57, and 0.06, respectively, in the 2A1g, state, which is known to be the ground state by experiment. The bonding in this complex is thus largely ionic. The first and second calculated ionization potentials are 6.51 and 6.77 eV, respectively, and are in reasonable agreement with the observed ionization potentials of 6.44 and 6.62 eV for Ni-tetraphenylporphine. CI calculations within the framework of the ligand field theory are also performed. The calculated order of the five lowest states is 4B2g4Eg, 4A2g, 2A1g, 4Eg from below and is not in agreement with the semiempirical order of 2A1g4B2G, 4A2g, 2Eg, 4Eg determined by Lin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号