首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
聚ε-己内酯/β-磷酸三钙共混物的制备与性能   总被引:1,自引:0,他引:1  
研究了β-磷酸三钙和表面接枝改性β-磷酸三钙与聚ε-己内酯共混物的制备,共混体系的界面相互作用、热性能和力学性能。获得了全生物降解的聚ε-己内酯/β-磷酸三钙共混物材料。  相似文献   

2.
淀粉接枝丙烯酸乙酯及其增容性   总被引:5,自引:0,他引:5  
研究了在挤出机中采用高温和剪切力的作用直接引发淀粉与丙烯酸乙酯的接枝共聚合反应.讨论了反应条件对接枝反应的影响,研究了接枝物在淀粉与聚乙烯共混物中的增容作用.实验结果表明,高温和剪切力可以引发淀粉与丙烯酸乙酯的接枝共聚合反应.接枝物作为增容剂,可以明显地改善淀粉与聚乙烯共混物的力学性能和流变性能.  相似文献   

3.
高速搅拌对淀粉/聚乙烯醇共混物溶液成膜性能的影响   总被引:10,自引:0,他引:10  
淀粉与聚乙烯醇(PVA)溶液在高速搅拌下共混,可大大改善淀粉/PVA共混薄膜的力学性能、透明性与耐水性,对其生物降解性有明显的影响.淀粉/PVA共混体系在高速搅拌前后的光谱分析、显微观察、分子量及流变性能的测定表明,这些变化起因于高速搅拌增加了淀粉中直链淀粉的含量,同时提高了淀粉与PVA共混溶液的稳定性,改善了淀粉/PVA共混物薄膜的使用性能.  相似文献   

4.
淀粉基高分子材料的研究进展   总被引:9,自引:0,他引:9  
概述了近5年国内外在淀粉的化学、物理改性及其作为一种材料使用方面取得的最新研究进展.淀粉的化学改性主要介绍了淀粉的酯化、醚化、氧化、交联、接枝共聚等,而物理改性主要介绍了淀粉分别与黏土、脂肪族聚酯、聚乙烯醇以及纤维素等天然大分子的共混改性,同时还介绍了通过酸化制备淀粉纳米晶.淀粉基材料除了用于制备可生物降解塑料、吸附材...  相似文献   

5.
反应性单体改性PP/PS共混物结晶与熔融行为   总被引:2,自引:0,他引:2  
制备了三种反应性单体和两种PP接枝物改性的PP/PS共混物,用DSC研究了改性PP/PS共混物的结晶与熔融行为。结果表明:PS的加入提高了PP的结晶温度,两种接枝物的加入进一步提高共混物中PP的结晶温度,少量反应性单体对结晶温度影响不大,但高用量时则明显提高共混物的结晶温度;外加接枝物或者反应性单体对共混物中PP的熔融温度影响不大,但是熔融峰形与结晶温度高低有关。  相似文献   

6.
含二烯丙基双酚A醚相容剂对HDPE/PC共混体系的影响   总被引:3,自引:0,他引:3  
用低密度聚乙烯接枝二烯丙基双酚A醚(LDPE g DBAE)作为高密度聚乙烯/聚碳酸酯(HDPE/PC)共混体系的增容剂,研究了其对HDPE/PC共混体系的影响.通过共混物形态观察、热力学性能测试和结晶性分析,发现LDPE g DBAE对HDPE/PC共混体系有良好的增容效果.并发现了增容剂在共混物中的最佳用量为10phr,提高增容剂的接枝率更有利于改善共混物的性能  相似文献   

7.
研究了聚乳酸和改性淀粉共混挤出前的固相酯化反应对共混体系的增容作用。比较挤出样条经二氯甲烷抽提后剩余物的固体13C-NMR光谱谱图,发现未经酯化反应时剩余物为淀粉,经酯化反应后剩余物的固体13C-NMR光谱谱图在20ppm和170ppm处出现聚乳酸特征的碳吸收峰,说明剩余物中含有聚乳酸和淀粉的接枝物。由共混物中聚乳酸的端羧基含量的测定结果也能说明酯化反应后共混物剩余物中含有聚乳酸和淀粉的接枝物。考察了生成的接枝物对共混体系相容性的影响,扫描电镜分析结果表明,经过预处理酯化反应后共混物相容性得到了提高。挤出样条取向拉伸后进行力学性能测试,发现酯化反应明显提高了力学性能。该方法可以通过设计共混挤出过程实现改变共混物相容性的目的,具有广阔的前景和很强的应用价值。  相似文献   

8.
为提高聚乳酸(PLA)/淀粉共混物界面作用和降低成本,引入甲基丙烯酸缩水甘油酯(GMA)接枝聚乳酸和塑化淀粉(TPS),通过挤出和注射成型制备接枝聚乳酸/塑化淀粉共混物(PLA-g-GMA/TPS)。红外光谱分析证实,GMA成功接枝到PLA分子链上。对共混物的力学性能、热机械性能、微观形貌、热性能及亲水性等进行了系统研究,结果表明,选择GMA用量为6%(接枝率为1.51%)和TPS用量为10%时的拉伸强度、断裂伸长率及弹性模量最佳,分别为42.6MPa、8.9%及260MPa。FE-SEM观察结果表明,低含量TPS中颗粒被基体包覆或嵌入,界面平整,界面结合力强。DMA和DSC结果显示,不同质量配比的PLA-g-6%GMA/TPS共混物的Tg、储存模量、结晶度、结晶温度及熔融温度仅在小范围内发生变化。吸水率和接触角结果表明,低含量TPS的共混物吸水率和接触角变化幅度均小于高含量TPS体系。  相似文献   

9.
《高分子学报》2021,52(7):734-740
通过酰氯接枝反应在淀粉大分子链上引入长烷基链和碳碳双键,使淀粉具有自乳化性能并增加反应位点,采用无皂乳液聚合将丙烯酸乙酯(EA)与酯化改性淀粉接枝共聚制备以淀粉为核的核壳粒子,即核壳粒子为硬核软壳的结构,通过添加甲基丙烯酸缩水甘油醚(GMA)进一步制备环氧化核壳粒子.将环氧化核壳粒子与聚乳酸(PLA)进行熔融共混改性,研究不同环氧化程度的核壳粒子对PLA性能的影响.结果表明,环氧化淀粉核壳粒子粒径约250 nm,与PLA共混改性后,环氧化核壳粒子能够明显提高PLA的韧性,而且其拉伸强度维持在较高水平,共混物缺口冲击强度提高至纯PLA的17倍.进一步研究表明环氧官能团的引入提高了核壳粒子与PLA的相容性同时增加了界面相互作用.  相似文献   

10.
淀粉-丙烯酸钠接枝共聚物的固体高分辨核磁共振研究   总被引:9,自引:0,他引:9  
运用固体高分辨核磁共振技术,通过测量13C魔角旋转/交叉极化(CP/MAS)谱、1H自旋-晶格弛豫时间T1及旋转坐标系中的自旋-晶格弛豫时间T1ρ,对一系列淀粉-丙烯酸钠接枝共聚物的相结构进行了研究,并与淀粉、均聚丙烯酸钠及两者共混物的实验结果进行了比较.结果表明,接枝共聚导致了淀粉结晶度的明显降低;在共混物和接枝共聚物中,淀粉和聚丙烯酸钠组分都具有纳米尺度的相容性,由于接枝的效应,接枝共聚物中两个组分表现出比共混物更高的相容水平.  相似文献   

11.
Summary: In this study, maleic anhydride (MA), and citric acid (CA) used as the processing additive and plasma treatment to improve the processing ability and mechanical strength of biodegradable starch/poly (vinyl alcohol) (PVA) blends were studied. The melt flow index (MFI) of starch/ glycerol/PVA (300g/60g/80g) blend was increased from 2.3g/10min to 32.7g/10min by adding 3g of MA and to 130 g/10min by adding MA and plasma treatment. The tensile strength of starch/glycerol/PVA blend increased from 3.48 to 6.21 MPa by adding 1.5g of MA and 1.5g of CA, while it increased to 6.26 MPa by plasma treatment. Esterification reaction which was evidenced by FTIR has been showed to improve the compatibility between starch and PVA when MA was dissolved into glycerol and glycerol grafted onto plasma pretreatment PVA. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) imaging were used to study the morphology of extruded blends.  相似文献   

12.
Bioresource based blends exploit the synergy between polymers derived from renewable resource and commercial polymers to obtain desirable physical, mechanical, and biodegradable properties. With the aim to develop a sustainable resource based biodegradable mulch films, nanostructured blends of epoxies of linseed oil (LOE) and dehydrated castor oil (DCOE) with poly (vinyl alcohol) (PVA) were prepared in the weight ratios of 20/80, 50/50 and 80/20. Microwave-assisted blending was used for the synthesis of DCOE/LOE blends with PVA and the results were compared with conventional solution blending using FT-IR, TGA-DTA and optical measurements. The results revealed that microwave-assisted blending proved to be an efficient method for the formation of compatible blends in a short span of time as compared to conventional solution blending. Transmission electron microscopy (TEM) analysis of DCOE/PVA and LOE/PVA blends synthesized by microwave-assisted method confirmed the formation of a nanostructured blend. Scanning electron microscopy (SEM), respirometry and mechanical measurements were carried out to compare the morphology, biodegradability, and the mechanical strength of DCOE/PVA and LOE/PVA blends. It was observed that DCOE/PVA blends exhibited higher biodegradability, better mechanical properties, and lower moisture absorption characteristics as compared to LOE/PVA blends. The mechanical strength, moisture absorption, and biodegradability of these blends were also compared with blends of other bioresource based polymers such as sugarcane bagasse (SCB), waste gelation (WG), apple peal (AP), and starch/glycerol with PVA, as available from the cited literature in the text.  相似文献   

13.
Starch and PLA were used alone and in blends to prepare nanostructured materials using both hydrophilic and organophilic clays, and PVA. All nanostructured materials were obtained by the solution intercalation method using water and chloroform as solvents. These systems were characterized by using conventional X-ray diffraction (XRD), conventional NMR and the non-conventional fast field cycling (FFC) NMR technique. The spin-lattice relaxation times were measured as a function of the Larmor frequency. The FFC results showed that the starch has only one relaxation time related to the amorphous region. PLA hybrids presented two distinct spin-lattice relaxation times. The blends of the two polymers also showed two relaxation times. The renormalized Rouse formalism was applied to describe the polymer molecular dynamics behavior in the studied systems containing starch. By adding clay or PVA, differences could be observed in relaxation time corresponding to the more amorphous region, indicating that, when adding clay and PVA, the effect that each has on the dynamics of the mixture is cancelled out.  相似文献   

14.
The degradation of blends of PVA and PMMA in the form of films cast from a common solution of the polymers has been studied by TVA, TG, and EGA (evolved gas analysis) for acetic acid. Volatile degradation products have been characterized by spectroscopic and GLC techniques. Molecular weight, spectral and thermal stability changes in PMMA extracted from partially degraded blends have been examined. These blends behave in a closely analogous manner to PVC-PMMA blends already investigated. The results suggest that the PMMA component of the heterogeneous blends is modified in two ways: (1) in a destabilization reaction series initiated by attack of acetate radicals generated in the PVA phase which migrate into the PMMA phase, and (2) in a stabilization reaction involving conversion of ester side groups to acid and subsequently to anhydride ring structures which act as blocking points for depolymerization. The rate of acetic acid production in the blend is less than in PVA degraded alone. The mechanism of degradation of PVA is reconsidered in the light of these results.  相似文献   

15.
Commercially available biodegradable aliphatic polyesters, i.e., high molecular weight poly(ϵ-caprolactone) (PCL) and polylactide (PLA), were melt blended with a well-known natural and biodegradable polysaccharide: starch either as corn starch granules or as thermoplastic corn starch after plasticization with glycerol. Conventional melt blending yielded compositions with poor mechanical performances as a result of lack of interfacial adhesion between the rather hydrophobic polyester matrix and the highly hydrophilic and moisture sensitive starch phase. Interface compatibilization was achieved via two different strategies depending on the nature of the polyester chains. In case of PLA/starch compositions, PLA chains were grafted with maleic anhydride through a free radical reaction conducted by reactive extrusion. The maleic anhydride-grafted PLA chains (MAG-PLA) allowed for reinforcing the interfacial adhesion with granular starch as attested by TEM of cryofracture surface. As far as PCL/starch blends were concerned, the compatibilization was achieved via the interfacial localization of amphiphilic graft copolymers formed by grafting of PCL chains onto a polysaccharide backbone such as dextran. The PCL-grafted polysaccharide copolymers were synthesized by controlled ring-opening polymerization of ϵ-caprolactone proceeding via a coordination-insertion mechanism. These compatibilized PCL/starch compositions displayed much improved mechanical properties as determined by tensile testing as well as a much more rapid biodegradation as measured by composting testing.  相似文献   

16.
The preparation of an enzymatic controlled drug release system from blends of PVA/starch/alphaA, in the form of films, is described. It was shown that alphaA hydrolyses the starch within these films, resulting in a time-dependent change of the porosity in the matrix. Films were characterized by calorimetric analysis to study the interactions between the enzyme and the polymeric constituents at the molecular level. The presence of alphaA, in fact, influenced the PVA crystallization in the blends. Release tests and permeability experiments were carried out to evaluate the transport properties of the films. An increase in porosity and permeability was observed by increasing alphaA content (16-28 wt.-%). Films loaded with theophylline and caffeine were also prepared to analyze drug release properties of the matrix. Drug release kinetics were coherent with the measured changes in porosity: at higher alphaA concentrations the amount of released drug increased under the influence of diffusion and erosion processes. The results obtained are promising for the realization of drug delivery devices for a rapid release or for the release of poorly soluble drugs which usually remain entrapped in the matrix.SEM images of a PVA/starch/alphaA film before (A) and after (B) the erosion.  相似文献   

17.
Starch and polyvinyl alcohol composite films, reinforced with raw and methylmethacrylate-grafted silk fibroin particles, were prepared by the solution-casting method on leveled plates. Silk fibroin was used as reinforcement for starch and polyvinyl alcohol (St/PVA) blends in order to improve their mechanical and water-resistance properties. The composites were plasticized with citric acid and cross-linked with gluteraldehyde. The reinforced films showed an increase in tensile strength with decrease in elongation at break. The optimized samples were characterized by scanning electron microscopy and were studied for their antibacterial properties. The biodegradable behavior was studied by the soil burial method.  相似文献   

18.
制备了高抗冲聚苯乙烯和马来酸酐的接枝共聚物,利用红外光谱,电子能谱和动态力学谱对产物的结构进行了表征,并通过滴定法测定了接枝物中马来酸酐的含量。结果表明马来酸酐接技到了高抗冲聚苯乙烯中顺丁橡胶的分子链上,接技率为4.7%。研究了该接枝共聚物对PA1010/HIPS共混物的增容作用。电镜照片显示,随着共聚物中接枝物含量的增加,分散相相区尺寸明显减小,说明增容效果显著。测定了共混体系的拉伸行为,研究了  相似文献   

19.
In this study, some aspects concerning the thermal decomposition of starch/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) nanocomposites with 2 wt% nanoclay, prepared by melt mixing method, were studied. For these loadings, the inorganic fillers are well dispersed through the PVA/starch matrix, i.e., the nanocomposites formed are mostly intercalated hybrids. The aim of this article is to establish the effect of the nanofiller nature on the thermal decomposition of the starch/PVA/MMT nanocomposites. The thermal behavior of the 50 wt% starch/50 wt% PVA blend and its nanocomposites with 2 wt% nanoclay has been investigated by thermogravimetric analysis coupled with Fourier transform-infrared spectroscopy and mass spectrometry (MS). The volatile compounds resulting during the thermal degradation were studied by in situ vapor phase FT-IR spectroscopy and MS technique under a controlled temperature/time program. Apart from the identification of the volatile compounds, some conclusions on the nanoclays effect on the degradation mechanism and formation of the volatile compounds in accordance with the previously developed general mechanisms for PVA and starch degradation have been formulated. The clay–PVA/starch nanocomposites show completely different degradation product distribution patterns, which may be attributed to the presence of the head-to-head structures and Si–O–C linkages formed between clay and blend components.  相似文献   

20.
分别采用普通熔融共混法和水辅助加工法,制备了具有不同共混形态的聚丙撑碳酸酯(PPC)/淀粉共混物,并研究了淀粉分散形态对共混物的玻璃化转变温度(Tg)、流变以及力学性能的影响。研究结果表明,采用普通熔融共混法时,淀粉未发生糊化,并以原颗粒状分散于基体中;而采用水辅助加工法时,淀粉发生糊化,并在挤出过程中原位形成纤维结构。当淀粉以纤维形式分散于PPC基体中时,其与PPC间的界面接触面积显著增加,二者的相互作用增强,PPC/淀粉共混物的Tg、储能模量以及复合黏度显著提高。力学性能测试结果表明,当淀粉质量分数为30%,采用水辅助加工法制备的PPC/淀粉共混物的拉伸模量相比于纯PPC提高了67.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号