首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一种在固体基底上制备高度取向氧化锌纳米棒的新方法   总被引:8,自引:1,他引:8  
郭敏  刁鹏  蔡生民 《化学学报》2003,61(8):1165-1168
采用廉价、低温的方法,在修饰过ZnO纳米粒子膜的ITO基底上成功制备出具有 高长径比、高度取向的ZnO纳米棒阵列,用扫描电子显微镜(SEM),X射线衍射(XRD) ,高分辨透射电子显微镜(HRTEM)以及拉曼光谱对制备出的ZnO纳米棒的结构和形貌 进行了表征,测试结果表明,ZnO纳米棒是单晶,属于六方晶系,与基底直,上仍 沿(001)晶面择优生长的特征,并且ZnO纳米棒基本上无氧空位的存在,统计结果显 示,水热反应2h后90%以上的ZnO纳米棒直径为120~190nm,长度为4μm  相似文献   

2.
<正>Silver nanorods have been successfully synthesized in large scale by the ethylene glycol(EG) reduction in the presence of ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate(bmimBF_4) and polyvinyl-pyrrolidone(PVP).The silver nanorods were characterized by scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),transmission electron microscopy(TEM),electron energy disperse spectroscopy(EDS) and UV-vis spectroscopy.The results showed that the uniform silver nanorods have an average diameter of about 100 nm and the aspect ratio from 15 to 20.IL,bmimBF_4 may play a role of capping agent together with PVP in the formation of silver nanorods.On the other band,bmimBF_4 may accelerate nucleation and improve the stability of the resulting Ag nanorods due to the low interface tension of IL.  相似文献   

3.
A novel seed-assisted chemical reaction at 95 degrees C has been employed to synthesize uniform, straight, thin, and single-crystalline ZnO nanorods on a hectogram scale. The molar ratio of ZnO seed and zinc source plays a critical role in the preparation of thin ZnO nanorods. At a low molar ratio of ZnO seed and zinc source, javelin-like ZnO nanorods consisting of thin ZnO nanorods with a diameter of 100 nm and thick ZnO nanorods with a diameter of 200 nm have been obtained. In contrast, straight ZnO nanorods with a diameter of about 20 nm have been prepared. Dispersants such as poly(vinyl alcohol) act spatial obstructors to control the length of ZnO nanorods. The morphology, structure, and optical property of the ZnO nanostructures prepared under different conditions have been characterized by transmission electron microscopy, field emission scanning electron microscopy, X-ray powder diffraction, high-resolution transmission electron microscopy, and cathodoluminescence. The formation mechanisms for the synthesized nanostructures with different morphologies have been phenomenologically presented.  相似文献   

4.
<正>Poly(N-vinyl-2-pyrrolidone)(PVP)-stabilized ruthenium nanorods with high aspect ratio by refluxing ruthenium(Ⅲ) chloride in n-propanol have been successfully prepared by means of a facile and rapid microwave heating for the first time.The structure and morphology of the obtained products were characterized by transmission electron microscopy(TEM),select area electron diffraction(SAED),ultraviolet-visible spectrophotometry(UV-vis),X-ray photoelectron spectroscopy(XPS) and Fourier transform spectroscopy(FT-IR).XPS analysis reveals that the nanorods were in the metallic state.TEM images showed that ruthenium nanorods had an obvious one-dimensional structure with the aspect ratio ranged from 5 to 40 nm and length up to 600 nm.SAED patterns indicated that the nanorods were single-crystalline with a hexagonal structure.  相似文献   

5.
利用直流电沉积方法在多孔氧化铝模板的孔洞中生成锌纳米线,在氧气氛围中,于800°C下氧化2h,将氧化铝中的锌氧化成氧化锌.本研究利用氧气氛围进行锌的氧化,大大提高了传统方法的氧化锌纳米线的制备效率.用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD)对其形貌及成分进行表征和分析,结果表明,氧化铝模板的有序孔洞中填充了大尺寸、均匀连续的多晶态氧化锌纳米线.纳米线具有约1000:1的高纵横比,其长度等于氧化铝模板的厚度,直径约为80nm.光致发光(PL)光谱表明,氧化锌纳米线在504nm处有由于氧空位引起的较强蓝绿光发射.这为进一步研究ZnO/AAO组装体发学性质和开发新型功能器件提供了基础.  相似文献   

6.
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.  相似文献   

7.
微波固相合成氧化锌纳米棒   总被引:4,自引:0,他引:4  
刘劲松  曹洁明  李子全  柯行飞 《化学学报》2007,65(15):1476-1480
通过前驱体的微波固相热分解法快速合成了氧化锌纳米棒, 其直径在60~385 nm之间, 长可达数微米. 前驱体则通过一步室温固相反应制备. 用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线分析(EDX)和透射电子显微镜(TEM)对产物的结构和形貌进行了表征. 同时, 对氧化锌纳米棒的光致发光(PL)性能作了测试, 结果表明在355 nm处有一个明显的近带隙发射峰. 另外, 对比实验表明, 微波辐射在氧化锌纳米棒的形成过程中起了关键性作用, 并对其形成机理进行了初步探讨.  相似文献   

8.
Various morphologies of ZnO nanostructures, such as nanoparticles, nanorods and nanoflowers have been achieved controllably by polymeric sol–gel method. In this approach, zinc nitrate Zn(NO3)2·6H2O, citric acid and ethylene glycol were used as the source of Zn2+, the chelating agent and the solvent agent, respectively. The microstructure of the ZnO nanostructures was characterized by X-ray diffractometry, scanning electron microscopy with the energy dispersive X-ray spectroscopy, transmission electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. The effect of ethylene glycol to citric acid mole ratio on the morphology and structure of the products was discussed. The ZnO nanoparticles with diameter between 24 ± 2 nm was obtained with EG:CA mole ratio equal to 2:1. The optical properties of as-obtained power were investigated by ultraviolet–visible spectroscopy.  相似文献   

9.
胡海峰  贺涛 《物理化学学报》2015,31(7):1421-1429
利用水热法合成了铟掺杂的氧化锌(In-ZnO)纳米棒. X射线衍射(XRD)结果表明铟掺杂能导致氧化锌晶格膨胀. 扫描电镜(SEM)结果显示, 随着前驱液中铟浓度的增加, 氧化锌纳米棒的长径比先减小后增大, 在铟原子浓度为1.0% (原子分数, x), 长径比达到最小值; 随着前驱液中铟浓度继续增加, 长径比增大. 从晶体生长角度考虑, 溶液中存在四羟基铟(In(OH)4-)生长基元, 该生长基元可转化为铟替位掺杂(InZn)和羟基铟氧化物(InOOH)两种状态, 二者之间存在竞争关系, 共同引起长径比的非线性变化. 当铟原子分数小于1.0%时, InZn是主要存在形式, 其能破坏锌极性面, 从而抑制(002)晶面的生长. 当铟原子浓度高于1.0%时, 生成微量的InOOH, 其能起到晶粒粘结剂的作用, 促进(002)面的生长. 因此, 可以通过改变前驱液中铟的浓度, 调控氧化锌纳米棒的长径比. 本文阐述了In-ZnO的生长机理, 并提供一种制备实用的掺杂氧化锌纳米棒的方法.  相似文献   

10.
Nanocrystalline ZnO nanorods were successfully grown by ultrasonication using an acidic ethanolic zinc acetate precursor solution followed by a flow coating process and annealing at 600 °C. The ZnO nanorods obtained were hexagonal in shape and showed a high degree of uniformity in size and distribution. These samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectrophotometry and the results are discussed. This approach appears to be the easiest way to fabricate bulk ZnO nanorods.  相似文献   

11.
The photo-antimicrobial and photocatalytic performance of ZnO nanorods as a function of aspect ratio are presented. The antibacterial activity of the synthesized ZnO nanorod samples against Gram-negative and Gram-positive bacteria (Staphylococcus aureus and Escherichia coli, respectively) was determined by shake flask method with respect to time. ZnO nanorods with high aspect ratio showed superior antimicrobial and photocatalytic activity. These results are supported by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, ultraviolet–visible (UV–Vis) spectroscopy, photoluminescence, and Brunauer–Emmett–Teller (BET) studies. Degradation of methylene blue dye as model organic pollutant was used to assess their photocatalytic activity. Pseudo-first-order rate kinetics was used to calculate the photocatalytic reaction rate constant. The mechanisms for both antimicrobial and photocatalytic activity are elucidated.  相似文献   

12.
海藻酸锌纤维热降解法制备氧化锌纳米结构   总被引:1,自引:0,他引:1  
采用天然高分子海藻酸钠为原料, 以氯化锌水溶液为凝固浴, 通过湿法纺丝技术成功制备了海藻酸锌(Alg-Zn)纤维.通过在空气中不同温度下对所得海藻酸锌纤维进行热处理, 得到了多种ZnO纳米结构. 利用热失重分析(TG)、X射线衍射(XRD)、电子能量损失谱(EELS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段对产物的组成、形貌和微观结构进行了详细表征. 结果表明, 焙烧温度和时间对所得ZnO纳米结构的尺寸和形貌具有重要影响; 800 ℃下热处理24 h以上可以得到直径约为120 nm的ZnO纳米棒. 通过仔细考察不同热处理时间得到的ZnO纳米结构, 提出了在焙烧条件下ZnO纳米棒的生长机理.  相似文献   

13.
The ZnO films with two-dimensional ordered macroporous structure were successfully fabricated through hydrothermal crystal growth of ZnO on the ZnO substrate covered with a monolayer of polystyrene (PS) spheres as template. The precursor solution of hydrothermal crystal growth of ZnO were prepared by equimolar solution of Zn(NO3)2·6H2O and hexamethylenetramine (HMT). The confinement effect of the PS spheres template on the growth of ZnO nanorods and the influence of sodium citrate on the crystal growth of ZnO had been studied. The film surface morphology and the preferential growth of ZnO crystal were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Also, the photoluminescence spectrum of ZnO films had been measured, and the corresponding mechanism was discussed. __________ Translated from Chemistry, 2007, 70 (8): 587–592 [译自: 化学通报]  相似文献   

14.
Superhydrophobic surface was prepared on the zinc substrate by chemical solution method via immersing clean pure zinc substrate into a water solution of zinc nitrate hexahydrate[Zn(NO3)2·6H2O] and hexamethylenetetraamine( C6H12N4) at 95 ℃ in water bath for 1.5 h, then modified with 18 alkanethiol. The best resulting surface shows superhydrophobic properties with a water contact angle of about 158° and a low water roll-off angle of around 3°. The prepared samples were characterized by powder X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy(EDX), transmission electron microscopy(TEM), and scanning electron microscopy(SEM). SEM images of the films show that the resulting surface exhibits flower-shaped micro- and nano-structure. The surfaces of the prepared films were composed of ZnO nanorods which were wurtzite structure. The special flower-like micro- and nano-structure along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

15.
《Comptes Rendus Chimie》2019,22(5):393-405
In this study, TiO2–ZnO nanostructured films prepared from different Ti/water mole ratios were deposited on glass plates by a sol–gel dip-coating method. The structural and surface properties, adherence, and photoactivity of synthesized TiO2–ZnO coatings in methylene blue degradation were investigated. Among the as-prepared TiO2–ZnO coatings from sols with different Ti/water mole ratios (1, 0.66, 0.5, and 0.4), the highest sol concentration (Ti/water mole ratio of 1) showed the highest methylene blue photodegradation of almost 80% after 400 min of UV irradiation. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray (EDX), and UV-vis diffuse reflectance spectra (DRS) confirmed that at high sol concentrations (Ti/water mole ratios of 1 and 0.66), a mixed phase of anatase and rutile is formed, whereas at a Ti/water mole ratio of 0.5, just pure rutile is formed. In detail, decreasing the sol concentration increases the cracks, degree of agglomeration, and the thickness of coatings. UV-vis DRS studies also confirm that decreasing the sol concentration in synthesized TiO2–ZnO films leads to a shift in the absorption region of the coating to the UV region. Moreover, decreasing the sol concentration declines the coating adherence onto glass plates. TEM images of the TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 revealed the formation of ZnO nanorods around a spherical TiO2, which indicates the presence of strong interaction between TiO2 and ZnO nanoparticles. The TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 was then evaluated at different methylene blue concentrations, pH values, and number of coatings. After five consecutive runs, no significant decrease in the photodegradation efficiency was observed. Scanning electron microscopy (SEM) picture of used coating showed a smooth and stable layer without any detachment. Thermogravimetric analysis (TG) and sonication test confirmed thermal and mechanical stabilities of this coating as well.  相似文献   

16.
Zinc Oxide (ZnO) nanorod arrays were grown on different substrates by hydrothermal method. The crystallinity of ZnO nanorod was regularly investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine morphology of the ZnO nanorods. The results indicate that the nanorods grow along [002] orientation. SEM and TEM images and XRD patterns show that the growth of ZnO nanorods on graphene/Quartz substrate is better than the other substrates due to the number and size of the nanorods which are highly affected through the properties of ZnO seed layers and it has lower defects than the other substrates. PL spectra ZnO would have a higher concentration of oxygen vacancy.  相似文献   

17.
Colloidal dispersions consisting of β-FeOOH nanorods with three different aspect ratios (4, 75 and 120) were synthesized using thermal hydrolysis of FeCl3 solutions. After surface modification with oleic acid, the β-FeOOH nanorods were incorporated in poly(methyl methacrylate). Transmission electron microscopy and X-ray diffraction were applied for structural characterization of the β-FeOOH nanorods. The influence of inorganic phase on the thermal properties of PMMA matrix was studied using thermogravimetry and differential scanning calorimetry. Improvement of the thermal stability and increase of the glass transition temperature were found with the increase of content of inorganic phase and the increase of aspect ratio.  相似文献   

18.
One-dimensional structure of ZnO nanorod arrays on nanocrystalline TiO2/ITO conductive glass substrates has been fabricated by cathodic reduction electrochemical deposition methods in the three-electrode system, with zinc nitrate aqueous solution as the electrolyte, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence (PL) spectra. The effects of film substrates, electrolyte concentration, deposition time, and methenamine (HMT) addition on ZnO deposition and its luminescent property were investigated in detail. The results show that, compared with on the ITO glass substrate, ZnO is much easily achieved by electrochemical deposition on the TiO2 nanoparticle thin films. ZnO is hexagonally structured wurtzite with the c-axis preferred growth, and further forms nanorod arrays vertically on the substrates. It is favorable to the growth of ZnO to extend the deposition time, to increase the electrolyte concentration, and to add a certain amount of HMT in the system, consequently improving the crystallinity and orientation of ZnO arrays. It is demonstrated that the obtained ZnO arrays with high crystallinity and good orientation display strong band-edge UV (375 nm) and weak surface-state-related green (520 nm) emission peaks.  相似文献   

19.
以乙酰丙酮锌为前躯体、聚乙烯吡咯烷酮(PVP)为表面活性剂,采用纳米微乳液法制备了有机相和水相双分散PVP包覆氧化锌(PVP-ZnO)纳米粒子;采用X射线衍射仪、透射电镜、红外光谱仪分析了其相组成、微结构及化学特征,利用紫外-可见吸收光谱仪和荧光光谱仪测定了其光学性质.结果表明,制备的纳米ZnO具有六方纤锌矿结构,粒径分布范围窄,结晶性好.纳米ZnO表面包裹PVP,使得PVP-ZnO在无机和有机溶剂中皆具有很好的分散性.与此同时,PVP-ZnO纳米粒子在紫外区尤其是373 nm处显示很强的紫外吸收,而在380nm的激发光下在496nm左右产生强蓝绿光发射,并在587nm处伴有弱黄绿光发射.  相似文献   

20.
Pure and Co-doped ZnO nanorods have been synthesized by a hydrothermal process. The structure, morphology and properties of as-prepared samples have been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectrometer as well as by superconducting quantum interference device (SQUID). The structure and morphology analyses show that Co doping can slightly impede the ZnO crystallinity, influence the nanorods morphology, but cannot change the preferred growth orientation of ZnO nanorods. The amount of Co doping contents is about 3.0 at% in ZnO nanorods and dopant Co2+ ions substitute Zn2+ ions sites in ZnO nanocrystal without forming any secondary phase. The optical measurements show that the Co doping can effectively tune energy band structure and enrich surface states in both UV and VL regions, which lead to novel PL properties of ZnO nanorods. In addition, ferromagnetic ordering of the as-synthesized Zn1?xCoxO nanorod arrays has been observed at room temperature, which should be ascribed to sp–d and d–d carrier exchange interactions and presence of abundant defects and oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号