首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lijuan Hua  Xueji Zhang 《Talanta》2009,77(5):1654-4893
Water-soluble CdTe quantum dots (QDs) with five sizes (2.25, 2.50, 2.77, 3.12, and 3.26 nm) were synthesized with the hydrothermal method. The electrochemiluminescence (ECL) of CdTe QDs was investigated in detail in air-saturated solution without adding foreign oxidant. It was found that the ECL of CdTe QDs displayed a size-dependent property. With the increasing in the particle size of the CdTe QDs, the ECL intensity was gradually increased, in addition, both ECL peak potentials and ECL onset potentials of CdTe QDs were shifted positively. Influences of some factors on the ECL intensity were investigated. Under the optimal conditions, the ECL intensity had a linear relationship with the concentration of l-cysteine (l-Cys) in the range from 1.3 × 10−6 to 3.5 × 10−5 mol L−1 (R2 0.996) with a detection limit of 8.7 × 10−7 mol L−1 (S/N = 3). The proposed method was applied to the determination of l-Cys in real samples with satisfactory results. Compared with previous reports, it has better selectivity for the determination of l-Cys.  相似文献   

2.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

3.
Xuan Liu 《Talanta》2009,78(3):691-1606
A novel method for electrochemiluminescent (ECL) detection of nitrite was proposed based on its quenching effect on anodic ECL emission of CdSe quantum dots (QDs). The ECL emission could be greatly enhanced by sulfite and dissolved oxygen in a neutral system and occurred at a relatively low potential in comparison with traditional anodic ECL emitter, leading to high sensitivity and good selectivity. The quenching mechanism followed an “electrochemical oxidation inhibition” process, which was completely different from those of some analytes on the ECL emission of QDs. The coincidence of photoluminescence and ECL spectra of the QDs indicated that the ECL emission resulted from the redox process of QDs core and the sulfite acted as a coreactant. The nitrite quenched ECL emission could be analyzed according to the treatment of Stern-Volmer equation with a linear range from 1 μM to 0.5 mM for detection of nitrite. This work presented a new efficient ECL methodology for quencher-related detection.  相似文献   

4.
Zhang Y  Deng S  Lei J  Xu Q  Ju H 《Talanta》2011,85(4):2154-2158
This work developed a novel method to greatly enhance the electrochemiluminescence (ECL) of CdS quantum dots (QDs). The ECL amplification was achieved by the assembly of QDs on poly (diallyldimethylammonium chloride)-functionalized carbon nanospheres (PFCNSs), and successfully employed for sensitive ECL biosensing of oxidase substrates. The carbon nanospheres were prepared by a “green” method, and the high loading of QDs on carbon nanospheres led to a 4-times increased ECL intensity with dissolved O2 as the coreactant. Using xanthine oxidase (XOD) as a model, an ECL biosensor was fabricated by immobilizing the enzyme on the mixing membrane of PFCNSs and QDs. The ECL biosensor showed a fast response to hypoxanthine with a linear concentration range from 2.5 × 10−8 to 1.4 × 10−5 M. The limit of detection was 5 nM at a signal-to-noise ratio of 3. The assay results of hypoxanthine in fish samples were in a good agreement with the reference values by amperometric technique. This facile approach to prepare the PFCNSs/QDs system for ECL biosensing could be of promising application in bioanalysis and electronic device.  相似文献   

5.
CdSe quantum dots as cores capped with ZnSe shell (CdSe@ZnSe QDs) via a facile and eco-friendly strategy have been synthesized in aqueous solution for the first time. The electrochemiluminescence (ECL) of CdSe@ZnSe QDs was greatly enhanced compared to that of CdSe QDs. In particular, the ECL properties of the resulting CdSe@ZnSe QDs were found to be controllable by adjusting the thickness of ZnSe shells. Benefiting from the enhanced ECL intensity, the sensor based on CdSe@ZnSe QDs could accurately quantify dopamine from 10.0 nM to 3.0 μM with a detection limit of 3.6 nM.  相似文献   

6.
电化学发光因具有低背景、 高灵敏度的优势已成为当前最先进的体外诊断技术之一. 以三联吡啶钌为代表的分子型电化学发光体系虽然实现了商业化应用, 但其光学性质已无法满足电化学发光分析的发展需求. 量子点作为新一代的理想发光材料在电化学发光领域表现出巨大的应用前景. 然而, 由于对量子点电化学发光的过程和机理研究尚不充分, 目前量子点电化学发光的各项性能均有待提升. 本文聚焦于量子点电化学发光领域的关键科学问题, 在总结该领域重要研究进展的基础上, 指出光谱学、 合成化学及电分析化学等多领域学科交叉是未来量子点电化学发光研究的重要发展方向.  相似文献   

7.
A novel dendritic CdS‐ZnS‐Quantum Dots (QDs) nanocomposite with intense electrochemiluminescence (ECL) and excellent magnetism was prepared, which was applied to the cancer cells assay based on ECL quenching of QDs by gold nanoparticles (NPs). DNA conjugation, gold NPs linking and sensing target cells can be directly performed on the magnetic nanocomposites, which is more rapid, convenient, and has better reproducibility than the conventional methods. So far, this is the first report on magnetic electrochemiluminescent QDs nanocomposites for cell detection based on ECL quenching, which opens a new approach for developing multifunctional QDs nanocomposite for ECL assays of cancer cells.  相似文献   

8.
For the first time, we report a sensitive and selective method to detect Cu2+ based on the electrochemiluminescence quenching of CdTe quantum dots (QDs) in aqueous solution. The mercaptosuccinic acid (MSA) protected CdTe QDs were prepared and characterized with UV, fluorescence and ECL. The anodic ECL quenching mechanism was attributed to the fact that MSA capping was removed from the surface of the CdTe QDs and preferentially bound with Cu2+. The displacement of MSA capping layer created imperfections on the CdTe QDs surface, and eventually led to the ECL quenching. The quenching effect of Cu2+ on the anodic ECL of CdTe QDs was found to be selective and concentration dependent, so we applied it to develop a method for the sensitive and selective detection of Cu2+. With the proposed method, the concentration of Cu2+ could be detected in the range of sub-nanomolar to micromolar levels.  相似文献   

9.
An electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of alpha fetoprotein (AFP) was fabricated using graphene-CdS quantum dots-alginate (G-CdS QDs-AL) as the immobilizing support and CdSe/ZnS QDs as the label. CdSe/ZnS QDs could effectively scavenge the ECL of G-CdS QDs-AL composite, and the quenched ECL intensity depended linearly on the logarithm for AFP concentration in the range from 0.05 to 500 fg/mL. The detection limit was 20 ag/mL. The proposed ECL immunoassay protocol for AFP detection is stable, specific, highly sensitive and promising for clinical application.  相似文献   

10.
采用一锅法,通过控制镉硫比合成了表面富镉离子的硫化镉量子点,利用L-半胱氨酸可与量子点表面Cd2+结合,使量子点表面钝化,从而增强其电化学发光信号的性质,实现了对L-半胱氨酸的选择性检测.对合成的量子点进行了表征,优化了检测条件.在优化的条件下,L-半胱氨酸在5.0×10-9~1.0×10-5 mol/L浓度范围内与ECL信号呈良好的线性关系,检出限为1.2×10-9 mol/L(S/N=3).本方法对L-半胱氨酸具有良好的选择性,用于实际样品中L-半胱氨酸的测定,结果令人满意.  相似文献   

11.
Bidentate chelation, meso‐2,3‐dimercaptosuccinic acid (DMSA), was used as a stabilizer for the synthesis of CdTe quantum dots (QDs). The bidentate chelate QDs, characterized with FT‐IR, PL, and UV/Vis spectroscopy; element analysis; and high‐resolution transmission electron microscope, exhibited surface traps due to the large surface/volume ratio of QD particle and the steric hindrance of the DMSA molecule. The unpassivated surface of the QDs produced a narrower band gap than the core and electrochemiluminescent (ECL) emission at relatively low cathodic potential. In air‐saturated pH 7.0 buffer, the QDs immobilized on electrode surface showed an intense ECL emission peak at ?0.85 V (vs. Ag/AgCl). H2O2 produced from electrochemical reduction of dissolved oxygen was demonstrated to be the co‐reactant, which avoided the need of strong oxidant as the co‐reactant and produced a sensitive analytical method for peroxidase‐related analytes. Using hydroquinone/horseradish peroxidase/H2O2 as a model system, a new, reagentless, phenolic, ECL biosensor for hydroquinone was constructed, based on the quenching effect of ECL emission of QDs by consumption of co‐reactant H2O2. The biosensor showed a linear range of 0.2–10 μM with acceptable stability and reproducibility. This work opens new avenues in the search for new ECL emitters with excellent analytical performance and makes QDs a more attractive alternative in biosensing.  相似文献   

12.
Xiaofei Hu  Wenrui Jin 《Talanta》2010,80(5):1737-18828
A new electrochemiluminescence (ECL) DNA assay is developed using quantum dots (QDs) as DNA labels. When nanoporous gold leaf (NPGL) electrodes are used, sensitivity of the ECL assay is remarkably increased due to ultra-thin nanopores. In this assay, target DNA (t-DNA) is hybridized with capture DNA (c-DNA) bound on the NPGL electrode, which is fabricated by conjugating amino-modified c-DNA to thioglycolic acid (TGA) modified at the activated NPGL electrode. Following that, amino-modified probe DNA is hybridized with the t-DNA, yielding sandwich hybrids on the NPGL electrode. Then, mercaptopropionic acid-capped CdTe QDs are labeled to the amino group end of the sandwich hybrids. Finally, in the presence of S2O82− as coreactant, ECL emission of the QD-labeled DNA hybrids on the NPGL electrode is measured by scanning the potential from 0 to −2 V to record the curve of ECL intensity versus potential. The maximum ECL intensity (Im,ECL) on the curve is proportional to t-DNA concentration with a linear range of 5 × 10−15 to 1 × 10−11 mol/L. The ECL DNA assay can be used to determine DNA corresponding to mRNA in cell extracts in this study.  相似文献   

13.
本文采用热注入法合成了以油胺/油酸为表面配体的、粒径均一的CdSe量子点(CdSe QDs)。调节表面配体交换中辛硫醇与CdSe QDs的比例,研究了表面配体对CdSe QDs光致发光及电致化学发光性质的影响,并提出了CdSe QDs的发光模型。结果表明,辛硫醇表面配体显著影响CdSe QDs的带边发射和深能级陷阱发射,因而导致CdSe QDs光致发光强度的显著降低,以及电致化学发光强度的增加。上述结果为进一步提高量子点的发光性能提供了依据。  相似文献   

14.
A rapid and ultrasensitive electrochemiluminescence (ECL) competitive immunoassay based on CdSe quantum dots (QDs) and the shorter chain as possible (cysteamine and glutaraldehyde) has been designed for the detection of salbutamol (SAL). Cysteamine and glutaraldehyde made coating antigen immobilize well on the gold electrode surface through the reaction between functional groups, which brought about the simplicity of the immunosensor to some extent. Transmission electron microscopy image, dynamic light scattering, photoluminescence, ultraviolet‐visible absorption and electrochemical impedance spectra were used to characterize the prepared CdSe QDs and the cysteamine/glutaraldehyde/Ovalbumin‐SAL/anti‐SAL‐QDs immunosensor. In the air‐saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 9.0), a strong ECL emission of QDs can be observed which depended linearly on the logarithm of the salbutamol concentration with a wide range from 0.05 ng mL?1 to 100 ng mL?1, and a detection limit of 0.0056 ng mL?1. The sensitivity, repeatability, and specificity of the ECL immunosensor have been evaluated. The sensor has been applied to real samples with satisfactory results. This work will open new ways of detecting food additive residue based on QDs ECL in immunoassays.  相似文献   

15.
Phosphate anions are determined based on the electrochemiluminescence (ECL) of CdSe quantum dots (CdSe QDs) capped with 3‐mercaptopropionic acid. The ECL gets quenched with the introduction of Eu3+ ions, but it is restored on the further addition of phosphate anions. The sensing mechanism might be due to the strong and specific interaction between phosphate anions and the Eu3+ ions, leading to the releasing of CdSe QDs from aggregates. On the basis of the quenching/recovery ECL behaviors, the ECL sensor offer acceptable sensitivity, high selectivity, and a linear response from 0.1 to 120 µM with a detection limit of 0.03 µM (3δ) for phosphate anions.  相似文献   

16.
Cheng L  Deng S  Lei J  Ju H 《The Analyst》2012,137(1):140-144
A novel disposable solid-state electrochemiluminescent (ECL) biosensor was fabricated by immobilizing glucose oxidase and surface-unpassivated CdTe quantum dots (QDs) on a screen-printed carbon electrode (SPCE). The surface morphology of the biosensor was characterized with scanning electron microscopy and atomic force microscopy. With dissolved O(2) as an endogenous coreactant, QDs/SPCE showed strong ECL emission in pH 9.0 HCl-Tris buffer solution with low ECL peak potential at -0.89 V. The ECL intensity was twice that with hydrogen peroxide as coreactant at the same concentration. This phenomenon meant the ECL decreased upon consumption of dissolved O(2) and thus could be applied to the construction of oxidase-based ECL biosensors. With glucose oxidase as a model enzyme, the biosensor showed rapid response to glucose with a linear range of 0.8 to 100 μM and a detection limit of 0.3 μM. Further detection of glucose contained in human serum samples showed acceptable sensitivity and selectivity. This work provided a promising application of QDs in ECL-based disposable biosensors.  相似文献   

17.
《中国化学快报》2021,32(9):2861-2864
All-inorganic perovskite quantum dots (QDs) have attracted great interests due to its outstanding properties. But their poor stability in polar solvents seriously hampered wide applications in analytical chemistry. In this work, strong, stable and flexibly regulated the electrochemiluminescence (ECL) emission form CsPbBr3 QDs was successfully obtained and applied in the analysis of polar solvents through the unique structure of closed bipolar electrode (BPE). To demonstrate the feasibility, it was successfully used in the detection of tetracycline (Tc) aqueous solution. CsPbBr3 QDs was immersed into organic solution in anode microcell of closed BPE while Tc aqueous solution was added into cathode microcell. The two microcells were physically separated and would not interfere with each other. But the bio-recognition event between aptamer and Tc in cathode microcell would induce the ECL signal change in anode microcell through the electrons conducted by BPE as the bridge. The ECL emission can be flexibly regulated by environmental factors of both polar and non-polar solvents and the interface status of the BPE. Compared with traditional methods to overcome the intrinsic instability in polar medium, the reported method does not need any further surface modifications, has no limitations on the targets and can provide wide development space for further deep research, which may open a new direction for the ECL sensing of CsPbBr3 QDs.  相似文献   

18.
《Analytical letters》2012,45(18):2837-2847
Water-soluble CdTe quantum dots (QDs) were synthesized by using a 3-mercaptopropionic acid (MPA) capped method. Stable electrochemiluminescence (ECL) was obtained when the CdTe QDs were immobilized onto a glassy carbon electrode (GCE) by Layer-By-Layer (LBL) assembly of CdTe QDs and polydiallyldimethylam-monium chloride (PDDA) by using 2-(dibutylamino)-ethanol (DBAE) as a co-reactant. The ECL enhancement of CdTe QDs by the addition of silver(I) ions was also investigated. The maximum enhancement factor about 4 was obtained on a GCE in the presence and absence of the co-reactant. The enhancement was observed in phosphate-citric acid and phosphate buffer solutions (PBS), but not in borate buffer solution (BBS). This was newly formed Ag nanoparticles or silver(I) complex with large surface area and high catalytic activity in the phosphate-citric acid and phosphate buffer solutions, thus resulting in ECL enhancement.  相似文献   

19.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

20.
A novel and sensitive electrochemiluminescence (ECL) immunosensor based on CdS quantum dots (QDs)-carbon nanotubes (CNTs) and gold nanoparticles-chitosan (GNPs-CHIT) was presented. CdS QDs ECL was much enhanced by combing poly(diallyldimethylammonium chloride) functionalized CNTs. GNPs-CHIT nanohybrids was used to construct an effective antibody immobilization matrix with excellent stability and bioactivity. The principle of ECL detection for target human IgG is based on the increment of steric hindrance after immunoreaction, which resulted in the decrease in ECL intensity. The linear response range was between 0.006 and 150 ng mL?1, and the detection limit was 0.001 ng mL?1. This approach offers obvious advantages of being simpler, faster, and more stable compared with other immunosensors, which possesses great potential for protein detection in clinical laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号