首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

2.
The 16-electron half-sandwich complex [Cp*Ir[S2C2(B10H10)]] (Cp* = eta5-C5Me5) (1a) reacts with [[Rh(cod)(mu-Cl)]2] (cod = cycloocta-1,5-diene, C8H12) in different molar ratios to give three products, [[Cp*Ir[S2C2(B10H9)]]Rh(cod)] (2), trans-[[Cp*Ir[S2C2(B10H9)]]Rh[[S2C2(B10H10)]IrCp*]] (3), and [Rh2(cod)2[(mu-SH)(mu-SC)(CH)(B10H10)]] (4). Complex 3 contains an Ir2Rh backbone with two different Ir-Rh bonds (3.003(3) and 2.685(3) angstroms). The dinuclear complex 2 reacts with the mononuclear 16-electron complex 1a to give 3 in refluxing toluene. Reaction of 1a with [W(CO)3(py)3] (py = C5H5N) in the presence of BF3.EtO2 leads to the trinuclear cluster [[Cp*Ir[S2C2(B10H10)]]2W(CO)2] (5) together with [[Cp*Ir(CO)[S2C2(B10H10)]]W(CO)5] (6), and [Cp*Ir(CO)[S2C2(B10H10)]] (7). Analogous reactions of [Cp*Rh[S2C2(B10H10)]] (1 b) with [[Rh(cod)(mu-Cl)]2] were investigated and two complexes cis-[[Cp*Rh[S2C2(B10H10)]]2Rh] (8) and trans-[[Cp*Rh[S2C2(B10H10)]]2Rh] (9) were obtained. In refluxing THF solution, the cisoid 8 is converted in more than 95 % yield to the transoid 9. All new complexes 2-9 were characterized by NMR spectroscopy (1H, 11B NMR) and X-ray diffraction structural analyses are reported for complexes 2-5, 8, and 9.  相似文献   

3.
The rhenacarborane salt Cs[Re(CO)3(eta5-7,8-C2B9H11)] (1) has been used to synthesize the tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Ph2P(CH2)2PPh2]] (3) where two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments have been shown by X-ray crystallography to be bridged by a single 1,2-bis(diphenylphosphino)ethane ligand. Reaction of 1 with Ag[BF4] in the presence of the ligands bis- or tris(pyrazol-1-yl)methane yields the complexes [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-CH2(C3H3N2-1)2]] (4) or [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-kappa1,kappa2-CH(C3H3N2-1)3]] (5), respectively. From X-ray studies, the former comprises a Re-Ag bond bridged by the carborane cage and with the bis(pyrazol-1-yl)methane coordinating the silver(I) center in an asymmetric kappa(2) mode. Complex 5 was unexpectedly found to contain a tris(pyrazol-1-yl)methane bridging two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments in a kappa1,kappa2 manner. Treatment of 1 with Ag[BF4] in the presence of 2,2'-dipyridyl and 2,2':6',2' '-terpyridyl yields [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-(C5H4N-2)(2)]] (6) and [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa3-C5H3N(C5H4N-2)2-2,6]] (7). The X-ray structure determination of 7 revealed an unusual pentacoordinated silver(I) center, asymmetrically ligated by a kappa3-2,2':6',2' '-terpyridyl molecule. The same synthetic procedure using N,N,N',N'-tetramethylethylenediamine gave a tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Me2N(CH2)2NMe2]2] (8) which is believed, in the solid state, to be bridged between the silver atoms by two of the diamine molecules. The salt 1 with Ag[BF4] in the absence of any added ligand gave the tetrameric cluster [ReAg[mu-5,6,10-(H)3-eta5-7,8-C2B9H8](CO)3]4 (9) where, in the solid state, four [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] units are held together by long interunit B-H right harpoon-up Ag bonds.  相似文献   

4.
金国新  刘宇  于晓燕 《有机化学》2000,20(2):202-205
以半夹心结构铑的化合物Cp*Rh(CN^tBu)Cl2(1)(Cp*=η^5-C5Me5)与Fe(C5H4ELi)2.2THF反应,合成出异双核二茂铁化合物Cp*Rh(CN^tBu)(EC5H4)2Fe[E=S(2),Se(3),Te(4)]。通过AgBF4氧化2和3得到二茂铁离子型化合物[Cp*Rh(CN^tBu)(EC5H4)2Fe]BF4[E=S(5),Se(6)]。采用元素分析、红外光谱、^1H和13CNMR谱以及EI-MS表征了所合成的化合物。  相似文献   

5.
Reaction of the 17-electron radical (*)Cr(CO)(3)Cp* (Cp* = C(5)Me(5)) with 0.5 equiv of 2-aminophenyl disulfide [(o-H(2)NC(6)H(4))(2)S(2)] results in rapid oxidative addition to form the initial product (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp*. Addition of a second equivalent of (*)Cr(CO)(3)Cp* to this solution results in the formation of H-Cr(CO)(3)Cp* as well as (1)/(2)[[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2). Spectroscopic data show that (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp* loses CO to form [eta(2)-(o-H(2)N)C(6)H(4)S]Cr(CO)(2)Cp*. Attack on the N-H bond of the coordinated amine by (*)Cr(CO)(3)Cp* provides a reasonable mechanism consistent with the observation that both chelate formation and oxidative addition of the N-H bond are faster under argon than under CO atmosphere. The N-H bonds of uncoordinated aniline do not react with (*)Cr(CO)(3)Cp*. Reaction of the 2 mol of (*)Cr(CO)(3)Cp* with 1,2-benzene dithiol [1,2-C(6)H(4)(SH)(2)] yields the initial product (o-HS)C(6)H(4)S-Cr(CO)(3)Cp and 1 mol of H-Cr(CO)(3)Cp*. Addition of 1 equiv more of (*)Cr(CO)(3)Cp to this solution also results in the formation of 1 equiv of H-Cr(CO)(3)Cp*, as well as the dimeric product (1)/(2)[[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2). This reaction also occurs more rapidly under Ar than under CO, consistent with intramolecular coordination of the second thiol group prior to oxidative addition. The crystal structures of [[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2) and [[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2) are reported.  相似文献   

6.
From reaction of [(Cp*Ir)2HxCl(4-x)] (x=1, 0) and LiBH4, arachno-[[Cp*IrH2]B3H7](1) is produced in moderate yield concurrently with [Cp*IrH4]. In contrast, reaction of [(Cp*Ir)2H2Cl2] with LiBH4 results in arachno-[[Cp*IrH]2(mu-H)B2H5] (3) in high yield at room temperature but a mixture of 1 and [[Cp*IrH]2(mu-H)BH4] (2) at 0 degrees C. BH3 x THF converts 1 to arachno-[(Cp*IrHB4H9] (4) and 2 to 3 with 1 as a minor product. Further, reaction of 3 with excess of BH3 x THF results in formation of nido-[[Cp*Ir]2-(mu-H)B4H7] (6) formed by loss of H2 from the intermediate arachno-[[Cp*IrH]2B4H8] (5). Reaction of 1 with [Co2(CO)8] permits the isolation of two metallaboranes, arachno-[[Cp*Ir(CO)]-B3H7] (7) and nido-[1-[Cp*Ir]-2,3-Co2-(CO)4(mu-CO)B3H7] (8). Treatment of 4 with [Co2(CO)8] gives only one single mixed-metal metallaborane nido-[1-[Cp*Ir]-2-Co(CO)3B4H7 (9) in high yield. Finally, pyrolysis of 8 results in loss of hydrogen and formation of pileo-[1-[Cp*Ir]-2,3-Co2(CO)5B3H5] (10) with a BH-capped square-pyramidal structure. With kinetic control rational synthesis of a variety metallaboranes has been achieved by varying the number of chlorides in the monocyclopentadienylmetal halide dimer, reaction temperature, types of monoborane, and metal fragment sources.  相似文献   

7.
The reinvestigation of an early synthesis of heterometallic cubane-type clusters has led to the isolation of a number of new clusters which have been characterized by spectroscopic and crystallographic techniques. The thermolysis of [(Cp*Mo)(2)B(4)H(4)E(2)] (1: E = S; 2: E = Se; Cp* = η(5)-C(5)Me(5)) in presence of [Fe(2)(CO)(9)] yielded cubane-type clusters [(Cp*Mo)(2)(μ(3)-E)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 4 and 5 (4: E = S; 5: E = Se) together with fused clusters [(Cp*Mo)(2)B(4)H(4)E(2)Fe(CO)(2)Fe(CO)(3)] (8: E = S; 9: E = Se). In a similar fashion, reaction of [(Cp*RuCO)(2)B(2)H(6)], 3, with [Fe(2)(CO)(9)] yielded [(Cp*Ru)(2)(μ(3)-CO)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 6, and an incomplete cubane cluster [(μ(3)-BH)(3)(Cp*Ru)(2){Fe(CO)(3)}(2)], 7. Clusters 4-6 can be described as heterometallic cubane clusters containing a Fe(CO)(3) moiety exo-bonded to the cubane, while 7 has an incomplete cubane [Ru(2)Fe(2)B(3)] core. The geometry of both compounds 8 and 9 consist of a bicapped octahedron [Mo(2)Fe(2)B(3)E] and a trigonal bipyramidal [Mo(2)B(2)E] core, fused through a common three vertex [Mo(2)B] triangular face. In addition, thermolysis of 3 with [Mn(2)(CO)(10)] permits the isolation of arachno-[(Cp*RuCO)(2)B(3)H(7)], 10. Cluster 10 constitutes a diruthenaborane analogue of 8-sep pentaborane(11) and has a structural isomeric relationship to 1,2-[{Cp*Ru}(2)(CO)(2)B(3)H(7)].  相似文献   

8.
Herein we describe different C-C coupling reactions of permethyltitanocene and -zirconocene with disubstituted 1,3-butadiynes. The outcomes of these reactions vary depending on the metals and the diyne substituents. The reduction of [Cp2*MCl2] (Cp* = C5Me5; M = Ti, Zr) with Mg in the presence of disubstituted butadiynes RC triple bond C-C triple bond CR' is suitable for the synthesis of different C-C coupling products of the diyne and the permethylmetallocenes, and provides a new method for the generation of functionalized pentamethyl-cyclopentadienyl derivatives. For M = Zr and R = R' = tBu, the reaction gives, by a twofold activation of one pentamethylcyclopentadienyl ligand, the complex [Cp*Zr[-C(=C=CHtBu)-CHtBu-CH2-eta5-C5Me3-CH2-]] (3), containing a fulvene ligand that is coupled to the modified substrate (allenic subunit). When using the analogous permethyltitanocene fragment "Cp2*Ti", the reaction depends strongly on the substituents R and R'. The coupling product of the butadiyne with two methyl groups of one of the pentamethylcyclopentadienyl ring systems, [Cp*Ti[eta5-C5Me3-(CH2-CHR-eta2-C2-CHR'-CH2)]], is obtained with R = R' = tBu (4) and R = tBu, R' = SiMe3 (5). In these complexes one pentamethylcyclopentadienyl ligand is annellated to an eight-membered ring with a C-C triple bond, which is coordinated to the titanium center. A different activation of both pentamethylcyclopentadienyl ligands is observed for R = R' = Me, resulting in the complex [[eta5-C5Me4(CH2)-]Ti[-C(=CHMe)-C(=CHMe)-CH2-eta5-C5Me4]] (6), which displays a fulvene as well as a butadienyl-substituted pentamethylcyclopentadienyl ligand. The influence exerted by the size of the metal is illustrated in the reaction of [Cp2*ZrCl2] with MeC triple bond C-C triple bond CMe. Here the five-membered metallacyclocumulene complex [Cp2*Zr(eta4-1,2,3,4-MeC4Me)] (7) is obtained. The reaction paths found for R = R' = Me are identical to those formerly described for R = R' = Ph.  相似文献   

9.
The diruthenium mu2-imido mu2-methylene complex [(Cp*Ru)2(mu2-NPh)(mu2-CH2)] serves as a bifunctional scaffold for cluster synthesis, producing a mu3-imido Ru2Pt cluster [(Cp*Ru)2(mu3-NPh)(mu2-CH2)Pt(PMe3)2] on treatment with [Pt(eta2-C2H4)(PMe3)2] and a mu3-methylidyne Ru4Pd2 cluster [(Cp*Ru)2(mu2-NPh)(mu3-CH)PdCl]2 with [PdMeCl(cod)].  相似文献   

10.
The yttrium, cerium and magnesium bis(trimethylsilyl)methyls [Ln[CH(SiMe3)2]3][Ln = Y (1), Ce (2)], and the known compound Mg[[CH(SiMe3)2]2 (C) and [Mg(mu-Br)[CH(SiMe3)2](OEt2)]2 (D) formed the crystalline nitrile adducts [1(NCBut)2] (5), [2(NCPh)] (6), [C(NCR)2][R = But (8), Ph (9), C6H3Me2-2,6 (10)] and [Mg(mu-Br)[CH(SiMe3)2](NCR)]2 [R = But (11), Ph (12), C6H3Me2-2,6 (13)], rather than beta-diketiminato-metal insertion products. The beta-diketiminato-cerium complex [Ce[(N(SiMe3)C(C6H4But-4))2CH][N(SiMe3)2]2] (16) was obtained from [Ce[N(SiMe3)2]3] and the beta-diketimine H[[N(SiMe3)C(C6H4But-4)]2CH]]. The cerium alkyl 2 and [Ln[CH(SiMe3)(SiMe2OMe)]3][Ln = Y (3), Ce (4)] were obtained from the appropriate lithium alkyl precursor and [Ce(OC6H2But2-2,6-Me-4)3] or LnCl3, respectively. Heating complex 3 with benzonitrile in toluene afforded 2,2-dimethyl-4,6-diphenyl-5-trimethylsilyl-1,3-diaza-2-silahexa-1,3-diene (7), a member of a new class of heterocycles. The X-ray structures of the crystalline compounds, D, [Mg[CH(SiMe3)2]2(OEt2)2], the known [Ce(Cl)[(N(SiMe3)C(Ph))2CH]2] (E) and 16 are reported. The cerium alkyl (like 1) has one close Ce...C contact for each ligand, attributed to a gamma-C-Ce agostic interaction. The Ln alkyls and have a trigonal prismatic arrangement of the chelating ligands (each of the same chirality at Calpha) around the metal. In an arene solution at 313 K exists as two isomers, as evident from detailed NMR spectroscopic experiments.  相似文献   

11.
Paek JH  Song KH  Jung I  Kang SO  Ko J 《Inorganic chemistry》2007,46(7):2787-2796
Preparation of a triisocyanide ligand, 1,3,5-tris[(4-isocyano-3,5-diisoproyl-phenyl)ethynyl]benzene (5), is presented. Ligand 5 is obtained in three steps in 76% overall yield. Reaction of 5 with (eta5-Cp*)Rh(Cabs,s')(Cabs,s'= 1,2-S2C2B10H10-S,S') produced the rhodadithiolene adduct [[(eta5-Cp*)Rh(Cabs,s')(CNC6H2iPr2-2,6-CC-3)]3C6H3-1,3,5] (6). Ligand 5 reacts with Cr(CO)5(THF) to give the triisocyanide complex [[Cr(CO)5(CNC6H2iPr2-2,6-CC-3)]3C6H3-1,3,5] (8) and with [AuCl(SMe2)] to give the triisocyanide complex [[AuCl(CNC6H2iPr2-2,6-CC-3)]3C6H3-1,3,5] (9). As revealed by a single-crystal X-ray diffraction study, the C(9)-N(3)-C(61) angle of 5.9 degrees of trichromium complex 8 occurs in the plane of the bridge and the gold center has a slightly bent linear configuration with a Cl(1)-Au(1)-C(21) angle of 175.4(4) degrees . The rhenation and platination of 5 employing [Re(bpy)(CO)3(AN)]PF6 (AN= acetonitrile) and [(CwedgeNwedgeN)PtCl] ((HCwedgeNwedgeN)= 6-phenyl-2,2'-bipyridine) yielded the luminescent Re(I) and Pt(II) complexes. Full characterization includes structural study of complexes 2, 8, and 9.  相似文献   

12.
The thermolysis of the phosphinidene complex [Cp*P[W(CO)5]2] (1) in toluene in the presence of tBuC(triple bond)CMe leads to the four-membered ring complexes [[[eta2-C(Me)C(tBu)]Cp*(CO)W(mu3-P)[W(CO)3]][eta4:eta1:eta1-P[W(CO)5]WCp*(CO)C(Me)C(tBu)]] (4) as the major product and [[W[Cp*(CO)2]W(CO)2WCp*(CO)[eta1:eta1-C(Me)C(tBu)]](mu,eta3:eta2:eta1-P2[W(CO)5]] (5). The reaction of 1 with PhC(triple bond)CPh leads to [[W(Co)2[eta2-C(Ph)C(Ph)]][(eta4:eta1-P(W(CO)5]W[Cp*(CO)2)C(Ph)C(Ph)]] (6). The products 4 and 6 can be regarded as the formal cycloaddition products of the phosphido complex intermediate [Cp*(CO)2W(triple bond)P --> W(CO)5] (B), formed by Cp* migration within the phosphinidene complex 1. Furthermore, the reaction of 1 with PhC(triple bond)CPh gives the minor product [[[eta2:eta1-C(Ph)C(Ph)]2[W(CO)4]2][mu,eta1:eta1-P[C(Me)[C(Me)]3C(Me)][C(Ph)](C(Ph)]] (7) as a result of a 1,3-dipolaric cycloaddition of the alkyne into a phosphaallylic subunit of the Cp*P moiety of 1. Compounds 4-7 have been characterized by means of their spectroscopic data as well as by single-crystal X-ray structure analysis.  相似文献   

13.
Reduction of the bis(iminopyridine) FeCl(2) complex {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}FeCl(2) using NaH has led to the formation of a surprising variety of structures depending on the amount of reductant. Some of the species reported in this work were isolated from the same reaction mixture, and their structures suggest the presence of multiple pathways for dinitrogen activation. The reaction with 3 equiv of NaH afforded {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(20PhN-C=CH(2)](C(5)H(3)N)}Fe(micro,eta(2)-N(2))Na (THF) (1) containing one N(2) unit terminally bound to Fe and side-on attached to the Na atom. In the process, one of the two imine methyl groups has been deprotonated, transforming the neutral ligand into the corresponding monoanionic version. When 4 equiv were employed, two other dinitrogen complexes {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(2)PhN-C=CH(2)](C(5)H(3)N)}Fe(micro-N2)Na(Et(2)O)(3) (2) and {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe(micro-N(2))Na[Na(THF)(2)] (3) were obtained from the same reaction mixture. Complex 2 is chemically equivalent to 1, the different degree of solvation of the alkali cation being the factor apparently responsible for the sigma-bonding mode of ligation of the N(2) unit to Na, versus the pi-bonding mode featured in 1. In complex 3, the ligand remains neutral but a larger extent of reduction has been obtained, as indicated by the presence of two Na atoms in the structure. A further increase in the amount of reductant (12 equiv) afforded a mixture of {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(2)PhN-C=CH(2)](C(5)H(3)N)}Fe-N(2) (4) and [{2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe-N(2)](2)(micro-Na) [Na(THF)(2)](2) (5) which were isolated by fractional crystallization. Complex 4, also containing a terminally bonded N(2) unit and a deprotonated anionic ligand bearing no Na cations, appears to be the precursor of 1. The apparent contradiction that excess NaH is required for its successful isolation (4 is the least reduced complex of this series) is most likely explained by the formation of the partner product 5, which may tentatively be regarded as the result of aggregation between 1 and 3 (with the ligand system in its neutral form). Finally, reduction carried out in the presence of additional free ligand afforded {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe(eta(1)-N(2)){2,6-[2,6-(iPr)(2)PhN=C(CH(3))](20(NC(5)H(2))}[Na(THF)(2)] (6) and {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe{2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(NC(5)H(2))}Na(THF)(2)) (7). In both species, the Fe metal is bonded to the pyridine ring para position of an additional (L)Na unit. Complex 6 chemically differs from 7 (the major component) only for the presence of an end-on coordinated N(2).  相似文献   

14.
A series of octahedral six-coordinate oxorhenium(V) mixed ligand complexes containing the common [ReO(L)]2+ fragment (L = o-OC6H4P(C6H5)2] have been synthesized and characterized. Hence, it was shown that the [ReO(L)]2+ moiety can accommodate a variety of tridentate ligands containing a central amine group amenable to deprotonation and different combinations of lateral groups, such as ethylamine, substituted ethylamine, ethylthiol, and ethylthioether arms. In particular, by reaction of equimolar amounts of the pertinent HLn ligands with the [(n-C4H9)4N][ReOCl3(L)] precursor in refluxing acetonitrile/methanol or dichloromethane/methanol mixtures, the following series of [ReO(Ln)(L)]+/0 oxorhenium(V) complexes has been generated: ReO[[N(CH2CH2NH2)2][o-OC6H4P(C6H5)2]]Cl (1); ReO[[C2H5)2NCH2CH2NCH2CH2S][o-OC6H4P5)2]] (2); ReO[[(CH2)4NCH2CH2NCH2CH2S][o-OC6H4P(C6H4P(C6H5)2]] (3); and ReO[[C2H5SCH2CH2NCH2CH2S][o-OC6H4P(C6H5)2]] (4). The complexes are closed-shell 18-electron oxorhenium species, which adopt octahedral geometries both in solution and in the solid state, as established by conventional physicochemical techniques including multinuclear NMR and single-crystal X-ray diffraction analyses.  相似文献   

15.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

16.
The reactions of the nickel complex [Ni(2)(iPr(2)Im)4(COD)] 1 with organonitriles smoothly and irreversibly proceed via intermediates with eta(2)-coordinated organonitrile ligands such as [Ni(iPr(2)Im)2(eta(2)-(CN)-PhCN)] 2 and [Ni(iPr(2)Im)2(eta(2)-(CN)-pTolCN)] 4 to yield aryl cyanide complexes of the type trans-[Ni(iPr(2)Im)2(CN)(Ar)] (Ar = Ph 3, pTol 5, 4-CF(3)C(6)H(4) 6, 2,4-(OMe)2C(6)H(3) 7, 2-C(4)H(3)O 8, 2-C(5)H(4)N 9). The compounds 3, 7, 9 and have been structurally characterized. For the conversion of 2 to 3 a free activation enthalpy DeltaG++(328 K) of 103.47 +/- 0.79 kJ mol(-1) was calculated from time dependent NMR spectroscopy. The analogous reaction of arylnitriles with electron releasing substituents or heteroaromatic organonitriles is significantly faster compared to the reaction with benzonitrile or toluonitrile. The reactions of 1 with acetonitrile or trimethylsilyl cyanide afforded [Ni(iPr(2)Im)2(CN)(Me)] 10 and structurally characterized [Ni(iPr(2)Im)2(CN)(SiMe(3))] 11. The usage of an organonitrile with a longer alkyl chain, adiponitrile, yielded [Ni(iPr(2)Im)2(eta(2)-(CN)-NCC(4)H(8)CN)] 12 as well as the C-CN activation product [Ni(iPr(2)Im)2(CN)(C(4)H(8)CN)]13 in thermal and photochemical reactions, although this pathway seems to be significantly interfered with by decomposition pathways under the formation of the dicyanide complex [Ni(iPr(2)Im)(2)(CN)(2)] 14.  相似文献   

17.
The tetraruthenium complex [Cp*RuCl]4 (Cp* = eta(5)-C(5)Me(5)) reacts with Na(2)NCN to afford the anionic bis(cyanamido)-capped triruthenium complex [(Cp*Ru)3(micro(3)-NCN)(2)]- ((2-)), which undergoes single electron oxidation to form [(Cp*Ru)3(micro(3)-NCN)2] upon workup with 1 equiv. of [Cp(2)Fe](PF(6)) (Cp = eta(5)-C(5)H(5)). Treatment of (2-) with 1 equiv. of HCl at room temperature leads to the protonation of one of the Ru-Ru edges to give the hydrido-bridged complex [(Cp*Ru)3(micro-H)(micro-NCN)2], while the cationic side-on NCNH(2) complex [(Cp*Ru)3(micro-Cl)(micro(3)-NCN)(micro(3)-NCNH(2)-1kappaC,N:2kappaC:3kappaN)]Cl (5) is obtained by the reaction of (2-) with an excess amount of HCl at -78 degrees C. On the other hand, the reaction of (2-) with BR(3) (R = Et, Ph) results in the ligation of two BR(3) molecules to the terminal nitrogen atoms of the cyanamido ligands to yield the bis(borane) adduct (PPN)[(Cp*Ru)(3){(micro(4)-NCN)(BR(3))}(2)] (6, PPN = Ph(3)PNPPPh(3)). 6b (R = Et) slowly liberates one BEt(3) molecule in acetone to give the mono(borane) adduct (PPN)[(Cp*Ru)3(micro(3)-NCN){(micro(4)-NCN)(BEt(3))}] (7). (2-) is also shown to react with [AuCl(PPh(3))] or PhCOCl to afford the tetranuclear heterometallic complex [(Cp*Ru)3(micro(3)-NCN){(micro(4)-NCN)(AuPPh(3))}] (8) or the benzoylcyanamido complex [(Cp*Ru)3(micro(3)-NCN)(micro(3)-NCNCOPh)] in which the Au(PPh(3))+ or benzoyl fragment is bound to the terminal nitrogen atom of a cyanamido ligand. The molecular structures of PPN+(2-), 5.C(6)H(6), 7 and 8.C(6)H(6) have been determined by single-crystal X-ray analyses.  相似文献   

18.
Solutions of Rh2(OAc)4 and Et4N[Cp*Ir(CN)3] react to afford crystals of the one-dimensional coordination solid [Et4N[Cp*Ir(CN)3][Rh2(OAc)4]]. This reaction is reversed by coordinating solvents such as MeCN. The structure of the polymer consists of helical anionic chains containing Rh2(OAc)4 units linked via two of the three CN ligands of Cp*Ir(CN)3-. Use of the more Lewis acidic Rh2(O2CCF3)4 in place of Rh2(OAc)4 gave purple [(Et4N)2[Cp*Ir(CN)3]2[Rh2(O2CCF3)4]3], whose insolubility is attributed to stronger Rh-NC bonds as well as the presence of cross-linking. The species [[Cp*Rh(CN)3][Ni(en)n](PF6)] (n = 2, 3) crystallized from an aqueous solution of Et4N[Cp*Rh(CN)3] and [Ni(en)3](PF6)2; [[Cp*Rh(CN)3][Ni(en)2](PF6)] consists of helical chains based on cis-Ni(en)(2)2+ units. Aqueous solutions of Et4N[Cp*Ir(CN)3] and AgNO3 afforded the colorless solid Ag-[Cp*Ir(CN)3]. Recrystallization of this polymer from pyridine gave the hemipyridine adduct [Ag[Ag(py)][Cp*Ir(CN)3]2]. The 13C cross-polarization magic-angle spinning NMR spectrum of the pyridine derivative reveals two distinct Cp* groups, while in the pyridine-free precursor, the Cp*'s appear equivalent. The solid-state structure of [Ag[Ag(py)][Cp*Ir(CN)3]2] reveals a three-dimensional coordination polymer consisting of chains of Cp*Ir(CN)3- units linked to alternating Ag+ and Ag(py)+ units. The network structure arises by the linking of these helices through the third cyanide group on each Ir center.  相似文献   

19.
New mononuclear titanium and zirconium imido complexes [M(NR)(R'(2)calix)] [M=Ti, R'=Me, R=tBu (1), R=2,6-C(6)H(3)Me(2) (2), R=2,6-C(6)H(3)iPr(2) (3), R=2,4,6-C(6)H(2)Me(3) (4); M=Ti, R'=Bz, R=tBu (5), R=2,6-C(6)H(3)Me(2) (6), R=2,6-C(6)H(3)iPr(2) (7); M=Zr, R'=Me, R=2,6-C(6)H(3)iPr(2) (8)] supported by 1,3-diorganyl ether p-tert-butylcalix[4]arenes (R'(2)calix) were prepared in good yield from the readily available complexes [MCl(2)(Me(2)calix)], [Ti(NR)Cl(2)(py)(3)], and [Ti(NR)Cl(2)(NHMe(2))(2)]. The crystallographically characterised complex [Ti(NtBu)(Me(2)calix)] (1) reacts readily with CO(2), CS(2), and p-tolyl-isocyanate to give the isolated complexes [Ti[N(tBu)C(O)O](Me(2)calix)] (10), [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [Ti[N(tBu)C(O)N(-4-C(6)H(4)Me)](Me(2)calix)] (13). In the case of CO(2) and CS(2), the addition of the heterocumulene to the Ti-N multiple bond is followed by a cycloreversion reaction to give the dinuclear complexes 11 and 12. The X-ray structure of 13.4(C(7)H(8)) clearly establishes the N,N'-coordination mode of the ureate ligand in this compound. Complex 1 undergoes tert-butyl/arylamine exchange reactions to form 2, 3, [Ti(N-4-C(6)H(4)Me)(Me(2)calix)] (14), [Ti(N-4-C(6)H(4)Fc)(Me(2)calix)] (15) [Fc=Fe(eta(5)-C(5)H(5))(eta(5)-C(5)H(4))], and [[Ti(Me(2)calix)](2)[mu-(N-4-C(6)H(4))(2)CH(2)]] (16). Reaction of 1 with H(2)O, H(2)S and HCl afforded the compounds [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [TiCl(2)(Me(2)calix)] in excellent yields. Furthermore, treatment of 1 with two equivalents of phenols results in the formation of [Ti(O-4-C(6)H(4)R)(2)(Me(2)calix)] (R=Me 17 or tBu 18), [Ti(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (19) and [Ti(mbmp)(Me(2)calix)] (20; H(2)mbmp=2,2'-methylene-bis(4-methyl-6-tert-butylphenol) or CH(2)([CH(3)][C(4)H(9)]C(6)H(2)-OH)(2)). The bis(phenolate) compounds 17 and 18 with para-substituted phenolate ligands undergo elimination and/or rearrangement reactions in the nonpolar solvents pentane or hexane. The metal-containing products of the elimination reactions are dinuclear complexes [[Ti(O-4-C(6)H(4)R)(Mecalix)](2)] [R=Me (23) or tBu (24)] where Mecalix=monomethyl ether of p-tert-butylcalix[4]arene. The products of the rearrangement reaction are [Ti(O-4-C(6)H(4)Me)(2) (paco-Me(2)calix)] (25) and [Ti(O-4-C(6)H(4)tBu)(2)(paco-Me(2)calix)] (26), in which the metallated calix[4]arene ligand is coordinated in a form reminiscent of the partial cone (paco) conformation of calix[4]arene. In these compounds, one of the methoxy groups is located inside the cavity of the calix[4]arene ligand. The complexes 24, 25 and 26 have been crystallographically characterised. Complexes with sterically more demanding phenolate ligands, namely 19 and 20 and the analogous zirconium complexes [Zr(O-4-C(6)H(4)Me)(2)(Me(2)calix)] (21) and [Zr(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (22) do not rearrange. Density functional calculations for the model complexes [M(OC(6)H(5))(2)(Me(2)calix)] with the calixarene possessing either cone or partial cone conformations are briefly presented.  相似文献   

20.
Thermolysis of an in situ generated intermediate, produced from the reaction of [Cp*MoCl(4)] (Cp* = η(5)-C(5)Me(5)) and [LiBH(4).THF], with excess Te powder yielded isomeric [(Cp*Mo)(2)B(4)TeH(5)Cl] (2 and 3), [(Cp*Mo)(2)B(4)(μ(3)-OEt)TeH(3)Cl] (4), and [(Cp*Mo)(4)B(4)H(4)(μ(4)-BH)(3)] (5). Cluster 4 is a notable example of a dimolybdaoxatelluraborane cluster where both oxygen and tellurium are contiguously bound to molybdenum and boron. Cluster 5 represents an unprecedented metal-rich metallaborane cluster with a cubane core. The dimolybdaheteroborane 2 was found to be very reactive toward metal carbonyl compounds, and as a result, mild pyrolysis of 2 with [Fe(2)(CO)(9)] yielded distorted cubane cluster [(Cp*Mo)(2)(BH)(4)(μ(3)-Te){Fe(CO)(3)}] (6) and with [Co(2)(CO)(8)] produced the bicapped pentagonal bipyramid [(Cp*MoCo)(2)B(3)H(2)(μ(3)-Te)(μ-CO){Co(3)(CO)(6)}] (7) and pentacapped trigonal prism [(Cp*MoCo)(2)B(3)H(2)(μ(3)-Te)(μ-CO)(4){Co(6)(CO)(8)}] (8). The geometry of 8 is an example of a heterometallic boride cluster in which five Co and one Mo atom define a trigonal prismatic framework. The resultant trigonal prism core is in turn capped by two boron, one Te, and one Co atom. In the pentacapped trigonal prism unit of 8, one of the boron atoms is completely encapsulated and bonded to one molybdenum, one boron, and five cobalt atoms. All the new compounds have been characterized in solution by IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the structural types were unambiguously established by crystallographic analysis of 2 and 4-8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号