首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qin F  Liu Y  Chen X  Kong L  Zou H 《Electrophoresis》2005,26(20):3921-3929
A chemically bonded cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase (CSP) was prepared by a radical polymerization reaction. The prepared CSP was packed into fused-silica capillaries with inner diameter of 75 microm to perform enantiomer separations in CEC. The electrochromatographic behavior of the CSP was investigated. On the prepared CSP, high EOF could be generated under acidic mobile phases, which represented an advantage for the separation of acidic enantiomers. Several neutral, acidic, and basic enantiomers were resolved on the prepared CSP under aqueous mobile phases. The column efficiencies were between 20,000 and 100,000 plates/m, which were much higher than those of HPLC. In addition, it was observed that the separation of some enantiomers benefited from the adoption of THF as mobile phase modifier.  相似文献   

2.
Enantiomeric separation of chiral pharmaceuticals is carried out in aqueous and non-aqueous packed capillary electrochromatography (CEC) using a teicoplanin chiral stationary phase (CSP). Capillaries were slurry packed with 5 microm 100-A porous silica particles modified with teicoplanin and initially evaluated using a non-aqueous polar organic mode system suitability test for the separation of metoprolol enantiomers (Rs = 2.3 and 53000 plates m(-1)). A number of pharmaceutical drugs were subsequently screened with enantioselectivity obtained for 25 racemic solutes including examples of neutral, acidic and basic molecules such as coumachlor (Rs = 3.0 and 86000 plates m(-1)) and alprenolol (Rs = 3.3 and 135000 plates m(-1)) in reversed-phase and polar organic mode, respectively. A statistical experimental design was used to investigate the effects of non-aqueous polar organic mobile phase parameters on the CEC electroosmotic flow, resolution and peak efficiency for two model solutes. Results primarily indicated that higher efficiency and resolution values could be attained at higher methanol contents which is similar to findings obtained on this phase in liquid chromatography.  相似文献   

3.
The capillary electrochromatographic separations of three acidic enantiomers (carprofen, coumachlor and warfarin) were studied on a capillary column packed with 5 microm (3R,4S)-Whelk-O 1 chiral stationary phase. The influence of several experimental parameters (mobile phase pH, type of background electrolyte, acetonitrile ratio, temperature, applied voltage and ionic strength) on electroosmotic flow velocity, retention factor, selectivity factor, efficiency, resolution and effectiveness of chiral separation was evaluated. It was notable that the optimum resolution of the acidic enantiomers was achieved at pH 3.0 phosphate buffer, suggesting that capillary electrochromatography in the ion-suppressed mode can be applied for chiral separations of a range of acidic compounds.  相似文献   

4.
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.  相似文献   

5.
吸附固定相电色谱和动态改性电色谱的手性分离   总被引:2,自引:0,他引:2  
对动态改性电色谱手性分离进行了研究。电色谱柱填充强阴离子交换固定相(SAX0,添加在流动相中的磺化β-环糊精(S-CD)动态地吸陵于SAX填料表面,形成一层准手性固定相。色氨酸、阿托品和异博定对映体在本体系获得了很好的分离,它们的分离分别为2.06,10.1和1.96,对映体峰的柱效价于85,000塔板数/米和412,000塔板数/米之间。连续运行17次,死时间和色氨酸对映体的电色谱保留因子的相对标准偏差分别为0.53%,0.62%和0.69%。此外,以吸附于SAX填料的牛血清白蛋白和S-CD为手性固定相进行了电色谱手性分离的研究。在这两种体系下分离色氨酸对映体的分离度分别为3.86和2.97。吸附S-CD柱电色谱和动态改性电谱的重现性进行子比较,发现动态改性电色谱有更好的重现性。  相似文献   

6.
Strong cation exchange (SCX)-type chiral stationary phases (CSPs) based on beta-amino sulfonic acid-terminated dipeptide derivatives as chiral selectors, immobilized on thiol-modified silica particles (3.5 microm), were synthesized and applied to enantiomer separations of chiral bases by nonaqueous capillary electrochromatography (CEC). The effect of structural variations of the sulfodipeptide selectors on the separation factors alpha was investigated. These studies included variation of the acid-terminal amino sulfonic acid residue, variation of the configurations, i.e., comparison of the diastereomeric (S,S)- and (R,S)-configurations of the sulfodipeptides, and finally comparison of sulfodipeptide selectors with corresponding beta-amino sulfonic acid analogs. In general, the capillary columns (100 microm ID) packed with the new SCX-type CSPs showed enantioselectivity for an elaborated set of chiral basic drugs in CEC acting by an enantioselective cation-exchange retention mechanism. N-[N-(4-Allyloxy-3,5-dichlorobenzoyl)-leucyl]-2-amino-3,3-dimethylbutane sulfonic acid, in particular with (R,S)-configuration, turned out to be a more effective SCX-type selector than a more rigid analog based on N-[N-(4-Allyloxy-3,5-dichlorobenzoyl)-leucyl]-2-pyrrolidinemethane sulfonic acid. Both of the former diastereomers were capable to baseline-resolve the enantiomers of ca. 40% of the tested basic chiral solutes including sympathomimetics and beta-blockers, while for the latter SCX-type CSPs only 10-20% of the selected solutes afforded resolutions > 1.5.  相似文献   

7.
Ye M  Zou H  Lei Z  Wu R  Liu Z  Ni J 《Electrophoresis》2001,22(3):518-525
A novel mode of capillary electrochromatography (CEC) based on a dynamically modified stationary phase was presented for chiral separation. The capillary column was packed with strong anion-exchange (SAX) stationary phase packing; the sulfated beta-cyclodextrin (S-CD), which was added to the mobile phase, was dynamically adsorbed to the packing surface. Separation of enantiomers was achieved by their different abilities to form an inclusion complex with the adsorbed S-CD. The enantiomers of tryptophan, praziquantel, atropine, metoprolol, and verapamil were successfully separated in this system with a column efficiency of 36000-412000 plates/m. The resolution value obtained for atropine was as high as 11.23. The superiority of CEC with a dynamically modified stationary phase over that with a physically adsorbed stationary phase was demonstrated. The influence of ionic strength, S-CD concentration, and methanol content on separation was also studied.  相似文献   

8.
The current popularity of capillary electrochromatography (CEC) has led to an increasing number of studies on the development and evaluation of enantioselective CEC systems. These studies clearly demonstrate that the most prominent advantage of electrically driven separation methods, the vastly increased column efficiency as compared to pressure-driven chromatography, can also be experimentally achieved for the separations of enantiomers. In analogy to high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE), several approaches have been used. The addition of a chiral selector to the mobile phase is the simplest method. Less erroneous and more elegant approaches are those that use open-tubular, conventional packed, and monolithic columns containing chiral stationary phases that stereoselectively interact with enantiomers. This review evaluates the new techniques and compares them to enantioselective HPLC and CE. Further, it describes the various concepts of enantioselective CEC and focuses on the current ‘state-of-the-art' column technology.  相似文献   

9.
Enantioseparations of chiral compounds were studied in nonaqueous capillary electrochromatography (NAQ CEC) with cellulose and amylose tris(3,5-dimethylphenylcarbamates) (Chiralcel OD and Chiralpak AD, respectively) coated on the silica gels of various pore and particle size. Increasing intraparticle perfusive transport with increasing pore size of silica favorably affected peak efficiency and resolution of enantiomers, although some decrease of separation factor was observed in the pore size range 60-200 A. Further improvement of peak efficiency was observed when the particle size of silica was reduced from 5 to 3 microm. The effects of a separation medium and temperature are also reported and the data obtained in the same capillaries in CEC and capillary liquid chromatography (LC) mode are compared.  相似文献   

10.
A comparison is made between the efficiency of microparticulate capillary columns and silica and polymer-based monolithic capillary columns in the pressure-driven (high-performance liquid chromatography) and electro-driven (capillary electrochromatography) modes. With packed capillary columns similar plate heights are possible as with conventional packed columns. However, a large variation is observed in the plate heights for individual columns. This can only be explained by differences in the quality of the packed bed. The minimum plate height obtained with silica monolithic capillary columns in the HPLC mode is approximately 10 microm, which is comparable to that of columns packed with 5-microm particles. The permeability of wide-pore silica monoliths was found to be much higher than that of comparable microparticulate columns, which leads to much lower pressure drops for the same eluent at the same linear mobile phase velocity. For polymer-based monolithic columns (acrylamide, styrene/divinyl benzene, methacrylate, acrylate) high efficiencies have been found in the CEC mode with minimum plate heights between 2 and 10 microm. However, in the HPLC mode minimum plate heights in the range of 10 to 25 microm have been reported.  相似文献   

11.
The macrocyclic antibiotic, vancomycin, is covalently bonded to LiChrospher diol silica packed columns and evaluated in capillary electrochromatography (CEC) both in the reversed-phase and polar organic mode. Initially, capillaries were packed with 5 microm LiChrospher 100 A diol silica and evaluated in CEC with a reversed-phase biphenyl-pyrene achiral test resulting in resolution and efficiency values of ca. 2.5 and 100000 plates meter(-1), respectively. Repeatability for this test (resolution and efficiency) was also examined and found to be acceptable for both run-to-run (n=5, 0.74% and 1.5%) and column-to-column (n=5, 3.4% and 9.0%), respectively. Similar results were obtained when the 10 microm LiChrospher 1000 A diol silica was examined with the exception of efficiency, where a reduced plate height value of four times lower was obtained compared to the 100 A material. A simple three step in-situ vancomycin immobilisation procedure was subsequently carried out on these packed diol columns. Selectivity was obtained for thalidomide enantiomers on this vancomycin chiral stationary phase in reversed-phase CEC with resolution and efficiency values of ca. 2.5 and 80000 plates meter(-1), with acceptable repeatability (n=8) 0.9% and 3.0%, respectively. Selectivity was also obtained for thalidomide enantiomers on this phase in the polar organic mode with resolution and efficiency values of ca. 2.5 and 120000 plates meter(-1), with acceptable repeatability (n=7) 0.9% and 2.0%, respectively. It was possible to deduce from a chemometric design carried out for evaluating the mobile phase component effects that organic modifier ratio, MeOH/MeCN, played a significant role in controlling both resolution and efficiency. It was also possible to separate a number of basic analytes including four beta-adrenergic blocking agents in the polar organic mode albeit with lower resolution and efficiency values, ca. 1.5 and 45000 plates meter(-1), respectively.  相似文献   

12.
Separation of hydroxy acid enantiomers was achieved by using capillary electrochromatography (CEC) employing a chiral stationary phase (CSP) based on MDL 63,246 (Hepta-Tyr), a macrocyclic antibiotic of the teicoplanin family. The chiral selector was chemically bonded to 5 num diol-modified silica particles and the CSP mixed with amino silica (3:1 w/w) was packed into a 75 num ID fused-silica capillary. The CEC experiments were carried out by using an aqueous reversed-phase mode for the enantiomeric resolution of hydroxy acid compounds. Good enantioresolution was achieved for mandelic acid (MA), m-hydroxymandelic acid (m-OH-MA), p-OH-MA, and 3-hydroxy-4-methoxymandelic acid (3-OH-4-MeO-MA). The CEC system was less enantioselective towards 2-phenyllactic acid (2-PhL) and 3-PhL while mandelic acid methyl ester (MA-Et-Est) enantiomers were not resolved. Several experimental parameters, such as organic solvent type and concentration, buffer pH, capillary temperature, on enantioresolution factor, retention time, and retention factor were studied.  相似文献   

13.
Various parameters have been evaluated to develop a process for optimization of column manufacture for packed capillary electrochromatography (CEC). Spherisorb ODS-1 was packed into 75 microm I.D. capillaries to establish a standard set of packing conditions to afford high-performance columns free of voids. Numerous silica-based packing materials including porous and non-porous reversed-phase and ion-exchange phases were employed to evaluate the applicability of the standard conditions. Success of column manufacture and performance demonstrate a relationship to the colligative properties of the packing materials under the applied conditions. Frequently encountered difficulties arising from inadequate column conditioning and void formation in the packed bed are identified and discussed.  相似文献   

14.
Dong X  Wu R  Dong J  Wu M  Zhu Y  Zou H 《Electrophoresis》2008,29(4):919-927
A hydrophilic chiral capillary monolithic column for enantiomer separation in CEC was prepared by coating cellulose tris(3,5-dimethylphenyl-carbamate) (CDMPC) on porous hydrophilic poly(acrylamide-co-N,N'-methylene-bisacrylamide) (poly(AA-co-MBA)) monolithic matrix with confine of a fused-silica capillary. The coating conditions were optimized to obtain a stable and reproducible chiral stationary phase for CEC. The effect of organic modifier of ACN in aqueous mobile phase for the enantiomer separation by CEC was investigated, and the significant influence of ACN on the enantioresolution and electrochromatographic retention was observed. Twelve pairs of enantiomers including acidic, neutral, and basic analytes were tested and nine pairs of them were baseline-enantioresolved with acidic and basic aqueous mobile phases. A good within-column repeatability in retention time (RSD = 2.4%) and resolution (RSD = 3.2%) was obtained by consecutive injections of a neutral compound, benzoin, on a prepared chiral monolithic column, while the between-column repeatability in retention time (RSD = 6.4%) and resolution (RSD = 9.6%) was observed by column-to-column examination. The prepared monolithic stationary phase showed good stability in either acidic or basic mobile phase.  相似文献   

15.
Liu Z  Wu R  Zou H 《Electrophoresis》2002,23(22-23):3954-3972
This review surveys the recent progress in the adsorbed stationary phases for capillary electrochromatography (CEC). Adsorption-based methods for preparation of stationary phase are novel approaches in CEC, which allow rapid and facile preparing stationary phases with desirable selectivity onto an open-tubular fused-silica capillary, a bare-silica or ion-exchange packed column or a monolithic silica or polymer column. A variety of adsorbing agents have been developed as adsorbed stationary phases, including ionic long-chain surfactant, protein, peptide, amino acid, charged cyclodextrin (CD), basic compound, aliphatic ionene, and ion-exchange latex particle. The adsorbed stationary phases have been applied to separation of neutral, basic and acidic organic compounds, inorganic anions and enantiomers. They have also been applied to on-line sample concentration, fast separation and study of the competitive binding of enantiomers with protein.  相似文献   

16.
毛细管反相电色谱法分离行为的研究   总被引:7,自引:3,他引:4  
魏伟  王义明  罗国安 《色谱》1997,15(2):110-113
对乙睛-水-磷酸二氢销体系毛细管反相电色谱分离行为进行了研究。采用柱上紫外检测,在75μmi.d.×30cm的毛细管ODS(3μm)填充柱上获得了小于2.0的折合培板高度。同时还研究了乙睛的比例、电解质的浓度和电场强度等因素对电渗流和往效的影响。  相似文献   

17.
Zou H  Ye M 《Electrophoresis》2000,21(18):4073-4095
Adsorption is always considered a troublesome effect in capillary electrophoresis (CE) and capillary electrochromatography (CEC). However, the adsorption effect can also be exploited to prepare or optimize the stationary phase in CEC. Compared with the chemical synthesis of new stationary phase materials for CEC, this method is simpler and more convenient. This review is focused on CEC with physically and dynamically adsorbed stationary phases. Separation of some acidic, basic and neutral solutes as well as enantiomers in CEC with dynamically adsorbed stationary phases are presented. The theory for the migration of charged solutes and the stationary phases currently used in CEC are also briefly reviewed.  相似文献   

18.
In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.  相似文献   

19.
This work describes initial investigations of strong anion-exchange (SAX) packing materials for capillary electrochromatography (CEC). The use of SAX phases in CEC is theoretically appealing for the analysis of negatively charged species. The reversed direction of the electroosmotic flow (EOF) generated by SAX phases (in comparison to reversed phases and strong cation-exchange phases) means that negative species can migrate with the EOF, not against it, hence the analysis times, of such species should be decreased and efficiencies improved. Duplex CEC columns (the standard for instruments using UV detection) consist of a packed and an unpacked section. Using common reversed-phase packing materials the direction of the EOF in both sections is co-linear, however when normal fused-silica capillaries are packed with SAX material the direction of the EOF in the two sections oppose one another. It has been shown, using conventional duplex CEC columns and fully packed CEC-MS columns that the opposing direction of EOF causes a massive degradation in column performance. Consequentially, it is demonstrated that if the EOF in the open section of the duplex SAX column can be controlled via pH or capillary derivatisation then good, reproducible CEC can be performed on anionic species using SAX packed CEC columns.  相似文献   

20.
The evolution of chromatography has led to the reduction in the size of the packing materials used to fabricate HPLC columns. The increase in the backpressure required has led to this technique being referred to as ultrahigh-pressure liquid chromatography (UHPLC) when the column backpressure exceeds 10000 psi (approximately 700 bar). Until recently, columns packed with sub-2-microm materials have generally fitted into two classes; either short (less than 5 cm) columns designed for use on traditional HPLC systems at pressures less than 5000 psi (350 bar), or capillary columns (inner diameters less than 100 microm). By using packing materials with diameters <2 microm to fabricate UHPLC columns, there is an increase in efficiency and a decrease in the analysis time that are directly proportional to the size of the packing material. In order to realize and exploit the increase in efficiency, however, the columns must maintain lengths typically associated with analytical columns (15-25 cm). We have packed 1 mm diameter, 150 mm in length columns with 1.5 microm packing material, and evaluated their performance in UHPLC. The pressure required to achieve optimum linear velocities in plots of plate height versus linear velocity was in the vicinity of 1104 bar (16000 psi). The 1.5 microm particle-packed column was compared with the more traditional 150 mm long analytical columns packed with 3 microm materials. This column showed an efficiency that was approximately twice that observed with the 3 microm packed column and a concomitant reduction in the analysis time, theoretically predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号