首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The nickel-aluminum layered double hydroxide (Ni-Al LDH) was synthesized by a simple co-precipitation method and used as a solid-phase extraction (SPE) sorbent for separation and pre-concentration of trace levels of salicylic acid (SA) from aqueous solutions. Extraction of analyte is based on the adsorption of salicylate ions on the Ni-Al (NO3) LDH and/or their exchanging with LDH interlayer NO3 ions. The retained analyte on the LDH was stripped by 3 mol L−1 NaOH solution and its concentration was subsequently determined spectrofluorometrically at λem = 400 nm with excitation at λex = 270 nm. Various parameters affecting the extraction efficiency of SA on the Ni-Al (NO3) LDH, such as pH, amount of nano-sorbent, sample loading flow rate, elution conditions, sample volume and matrix effects were investigated. In the optimum experimental conditions, the limit of detection (3 s) and enrichment factor were 0.12 μg L−1 and 40, respectively. The relative standard deviation (RSD) for six replicate determinations of 10 μg L−1 SA was 2.3%. The calibration graph using the pre-concentration system was linear in the range of 0.3-45 μg L−1 with a correlation coefficient of 0.9985. The optimized method was successfully applied to the determination of SA in blood serum, willow leaf and aspirin tablet.  相似文献   

2.
An aluminum hydroxide coprecipitation method for the determination of cadmium, copper and lead by flame atomic absorption spectrometry in aqueous solutions, seawater and mineral water samples has been investigated. The coprecipitation conditions, such as the effect of the pH, the amount of carrier element, the effect of possible matrix ions and the time were examined in detail for the studied elements. It was found that cadmium, copper and lead are co-precipitated quantitatively (≥95%) with aluminum hydroxide at pH 7 with low R.S.D. values of around 2 to 3%. Detection limits (38) were 6 ng ml−1 for Cd, 3 ng ml−1 for Cu and 16 ng ml−1 for Pb. The method proposed was validated by the analysis of HPS 312205 seawater standard reference material and spiked mineral water samples.  相似文献   

3.
A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG)2 complex was eluted with 1 mol l−1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml−1 Na+, K+, Mg2+, Al3+ and Fe3+; 5000 μg ml−1 Ca2+ ; 500 μg ml−1 Pb2+; 125 μg ml−1 Zn2+; 50 μg ml−1 Cu2+ and 25 μg ml−1 Ni2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l−1, respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg−1 and 4.06 mg g−1, respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples.  相似文献   

4.
Separation of trace levels of lead from concentrated-matrix electroless nickel plating (ENP) waste solutions is required to meet the increasingly stringent environmental regulations. A solid phase extraction (SPE) system using a molecular recognition technology (MRT) gel was used for the selective separation of trace levels of lead (Pb) from the waste discharge of ENP operations, followed by subsequent analysis with inductively coupled plasma optical emission spectrometry (ICP-OES). Two SPE-MRTs, AnaLig® Pb-01 and AnaLig® Pb-02, packed in 3 mL polypropylene cartridges were used to treat the synthetic metal-waste solutions that were used to simulate the typical metal mixture in ENP bath waste. The fortified solutions contained 100-1000 μg L− 1 of Pb in an HNO3 matrix with pre-added Ni, Cu and other interfering elements (1000 mg L− 1). After the sample treatment, the SPE-MRT cartridges were washed with water and 0.1 M nitric acid, followed by elution with 0.03 M EDTA. The matrix elements (e.g., Ni, Cu) were completely removed at the washing step, while the ‘captured’ Pb was quantitatively eluted, as determined by ICP-OES measurements. The detection limit of the proposed method was 2.6 μg L− 1. ‘Real’ samples from commercial ENP operations were used to assess the validity of this method, and almost quantitative Pb recovery was observed. The excellent Pb selectivity of the SPE-MRT system indicates the potential of the proposed technique for trace-level Pb separation from the Pb-containing high matrix aqueous waste discharge.  相似文献   

5.
A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO3, in a 2 ml column preconditioned with 20 ml 0.01 M HNO3. Subsequently, REEs were quantitatively eluted with 20 ml 7 M HNO3. This solution was evaporated to dryness and the final residue was dissolved in 10 ml 2% HNO3 containing 1 μg l−1 of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ng l−1. The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.  相似文献   

6.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

7.
Baytak S  Zereen F  Arslan Z 《Talanta》2011,84(2):319-323
A trace element preconcentration procedure is described utilizing a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination of Cr, Cu, Fe, Mn, Ni and Zn from water samples by inductively coupled plasma atomic emission spectrometry. The elements were quantitatively retained on the column between pH 6 and 8. Elution was made with 5% (v/v) HNO3 solution. Recoveries ranged from 98 ± 2 (Cr) to 100 ± 4 (Zn) for preconcentration of 50 mL multielement solution (50 μg L−1). The column made up of 100 mg sorbent (yeast immobilized TiO2 NP) offers a capacity to preconcentrate up to 500 mL of sample solution to achieve an enrichment factor of 250 with 2 mL of 5% (v/v) HNO3 eluent. The detection limits obtained from preconcentration of 50 mL blank solutions (5%, v/v, HNO3, n = 11) were 0.17, 0.45, 0.25, 0.15, 0.33 and 0.10 μg L−1 for Cr, Cu, Fe, Mn, Ni and Zn, respectively. Relative standard deviation (RSD) for five replicate analyses was better than 5%. The retention of the elements was not affected from up to 500 μg L−1 Na+ and K+ (as chlorides), 100 μg L−1 Ca2+ (as nitrate) and 50 μg L−1 Mg2+ (as sulfate). The method was validated by analysis of freshwater standard reference material (SRM 1643e) and applied to the determination of the elements from tap water and lake water samples.  相似文献   

8.
This paper describes a simple and highly selective method for the separation, preconcentration and spectrophotometric determination of extremely low concentration of mercury. The method is based on the flotation of an ion-associate of HgI42− and ferroin between aqueous and n-heptane interface at pH 5. The ion-associate was then separated and treated with ammonia and dithizone solutions to extract only the mercury chelate with CH2Cl2. The measurement is feasible when the volume of the water sample containing Hg(II) was varied over 50-800 ml. Beer's law was obeyed over the concentration range of 8 × 10−9 to 1.6 × 10−7 mol l−1 with an apparent molar absorptivity of 6.53 × 106 l mol−1 cm−1 for a 500 ml aliquot of the water sample. The detection limit (n = 7) was 5.0 × 10−10 mol l−1 and the R.S.D. (n = 5) for 8.0 × 10−7 mol l−1 of Hg(II) was 3.7%. A notable advantage of the method is that the determination of Hg(II) is free from the interference of almost all cations and anions found in the environmental and waste water samples. The determination of Hg(II) in tap, synthetic sea water and human hair samples was carried out by the present method and cold vapor atomic absorption spectrometry (CV-AAS). The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples.  相似文献   

9.
A novel spectrophotometric method for the determination of cationic surfactants (CS) by using a new reagent benzothiaxolyldiazoaminoazobenzene (BTDAB) is developed. In 0.06-0.10 M sodium hydroxide, CS such as cetyltrimethylammonium bromide (CTMAB) and cetylpyrdinium chloride (CPC) react with BTDAB to form a violet-red 1:2 (CS:BTDAB) ion association complex in the presence of Triton X-100. This ion associate exhibits an absorption maximum at 580 nm with an apparent molar absorptivity of 4.1×104 l mol−1 cm−1. Beer’s law is obeyed for CTMAB or CPC in the concentration range 0-100 μg per 25 ml of solution. The proposed method based on the above colour reaction is simple and rapid, and there is no use of toxic organic solvents. It has been applied to the determination of trace CS in industrial wastewater with satisfactory results.  相似文献   

10.
Two different strategies for Buprofezin determination, an off-line extraction and stopped-flow determination and an automated procedure, based on the on-line extraction of Buprofezin samples with chloroform and flowing action analysis-fourier transform infrared (FIA-FT-IR) spectrometric measurement of the extracts, have been developed. For the treatment of the off-line extraction mode, data a three-factor partial least squares (PLSs) calibration was developed, using the region from 1465.7 to 1342.3 cm−1 with a single point baseline defined at 2051.9 cm−1 and based on the use of chloroform solutions of Buprofezin. The method provides a R.S.D. <0.1%, recoveries of the order of 100% and generates 25 ml of CHCl3 waste for each sample.On the other hand, the recommended FIA method provided a 3 s limit of detection of 20 μg ml−1, which corresponds to 0.12% (w/w) in the solid sample, a repeatability of 0.8% as R.S.D., and a maximum sampling frequency for the whole procedure of 6 h−1.The waste generation, being lower than the off-line strategy, is only 3 ml of CHCl3 per sample.  相似文献   

11.
Diverse matrix effects on the determination of bismuth, selenium and tellurium (μg g−1) in nickel-based alloys and pure copper by flow-injection hydride generation atomic absorption spectrometry (FIAS-HGAAS) were investigated. Sodium tetrahydroborate was used as the reductant. The separation of analytes from copper matrix was mandatory while the analytes were successfully determined without being separated from the alloy matrix. Hydrochloric acid was effective in the prereduction of bismuth and selenium, however, it did not give any satisfactory result for tellurium in nickel-based alloys. In this work, 5% (w/v) ascorbic acid was proved effective for the prereduction of tellurium.Successful determination of tellurium in copper was achieved when N-nitroso-N-phenylhydroxylamine (cupferron) chelation-extraction was employed for the separation of tellurium from copper matrix. Cupferron chelation-extraction was performed in phosphate buffer (a mixture of 0.2 mol l−1 sodium phosphate and 0.1 mol l−1 citric acid). Lanthanum hydroxide coprecipitation at pH 10.0±0.5 was effective for bismuth and selenium. Standard reference materials of nickel-based alloys and pure copper were analyzed using the proposed methods. The linear range for the calibration curves were 0.30-15 and 0.20-10 ng ml−1 for BiH3 and H2Se, respectively, with a correlation coefficient of 0.9995. For H2Te, the linear range for the calibration curves was 0.50-12 ng ml−1 with the correlation coefficient of 0.9994. Good agreement was obtained between experimental values and certified values. Satisfactory recovery ranged from 91±1 to 106±2% was obtained from five replicate determinations.  相似文献   

12.
Two vibrational spectrometry-based methodologies were developed for Metamitron determination in pesticide formulations. Fourier transform-middle infrared (FT-MIR) procedure was based on the extraction of Metamitron by CHCl3 and latter determination by peak area measurement between 1556 and 1533 cm−1, corrected with a two points baseline established from 1572 to 1514 cm−1. Fourier transform-near infrared (FT-NIR) determination was made after the extraction of Metamitron in acetonitrile and measuring the peak area between 6434 and 6394 cm−1 corrected using a two points baseline defined between 6555 and 6228 cm−1. Repeatability, as relative standard deviation, of 5 independent measurements at mg g−1 concentration level, of 0.16% and 0.07% for MIR and NIR and a limit of detection of 0.03 and 0.004 mg g−1 were obtained for MIR and NIR, respectively.NIR determination provides a sample frequency of 120 h−1, higher than that found by MIR and liquid chromatographic methods (60 and 15 h−1, respectively). On the other hand, the NIR method reduces the solvent consumption and waste generation, to only 1 ml acetonitrile per sample as compared with 3.4 ml chloroform required for the MIR determination and 60 ml acetonitrile used in the chromatographic reference procedure. So, vibrational procedures can be considered serious alternatives to long and time consuming chromatographic methods usually recommended for quality control of commercially available pesticide formulations.  相似文献   

13.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

14.
A simple and robust time-based on-line sequential injection system for trace mercury determination via cold vapour atomic absorption spectrometry (CVAAS), employing a new integrated gas-liquid separator (GLS), which in parallel operates as reactor, was developed. Sample and reductant are sequentially loaded into the GLS while an argon flow delivers the released mercury vapour through the atomic absorption cell. The proposed method is characterized by the ability of successfully managing variable sample volume up to 30 ml in order to achieve high sensitivity. For 20 ml sample volume, the sampling frequency is 25 h−1. The calibration curve is linear over the concentration range 0.05-5.0 μg l−1 of Hg(II), the detection limit is cL = 0.02 μg l−1, and the relative standard deviation is sr = 2.6% at 1.0 μg l−1 Hg(II) level. The performance of the proposed method was evaluated by analyzing certified reference material and applied to the analysis of natural waters and biological samples.  相似文献   

15.
A new method is proposed for the determination of bismuth and copper in the presence of each other based on adsorptive stripping voltammetry of complexes of Bi(III)-chromazorul-S and Cu(II)-chromazorul-S at a hanging mercury drop electrode (HMDE). Copper is an interfering element for the determination of Bi(III) because, the voltammograms of Bi(III) and Cu(II) overlapped with each other. Continuous wavelet transform (CWT) was applied to separate the voltammograms. In this regards, wavelet filter, resolution of the peaks and the fitness were optimized to obtain minimum detection limit for the elements. Through continuous wavelet transform Symlet4 (Sym4) wavelet filter at dilation 6, quantitative and qualitative analysis the mixture solutions of bismuth and copper was performed. It was also realized that copper imposes a matrix effect on the determination of Bi(III) and the standard addition method was able to cope with this effect. Bismuth does not have matrix effect on copper determination, therefore, the calibration curve using wavelet coefficients of CWT was used for determination of Cu(II) in the presence of Bi(III). The detection limits were 0.10 and 0.05 ng ml−1 for bismuth and copper, respectively. The linear dynamic range of 0.1-30.0 and 0.1-32.0 ng ml−1 were obtained for determination of bismuth in the presence of 24.0 ng ml−1 of copper and copper in the presence of 24.0 ng ml−1 of bismuth, respectively. The method was used for determination of these two cations in water and human hair samples. The results indicate the ability of method for the determination of these two elements in real samples.  相似文献   

16.
Liu Y  Liang P  Guo L 《Talanta》2005,68(1):25-30
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive potential of immobilized nanometer TiO2 for the preconcentration of trace Cd, Cr, Cu and Mn was assessed in this work. The metal ions studied can be quantitative retained at a pH range of 8-9, and 0.5 mol L−1 HNO3 was sufficient for complete elution. The adsorption capacity of immobilized nanometer TiO2 for Cd, Cr, Cu and Mn was found to be 2.93, 2.11, 6.69 and 2.47 mg g−1, respectively. A new method using a microcolumn packed with immobilized nanometer TiO2 as sorbent has been developed for the preconcentration of trace amounts of Cd, Cr, Cu and Mn prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method has been successfully applied for the determination of trace elements in some environmental samples with satisfactory results.  相似文献   

17.
A novel PVC-based membrane sensor based on vanadyl salophen (VNSP) for determination of trace amounts of monohydrogenphosphate (MHP) ions is introduced. The electrode revealed Nernstian response towards monohydrogenphosphate over the wide concentration range from 1.0×10−1 to 1.0×10−6 M at the pH of 8.2. The effect of solvent mediator, cationic additives and amount of ion-carrier on the behavior of the sensor was investigated. The sensor shows a short response time (<20 s) in the whole concentration ranges. The selectivity of the electrode is very high, and it can be used for detection of trace amounts of monohydrogenphosphate in the presence of large amounts of other anions. The detection limit of the electrode was 5.0×10−7 M (48 ng/ml) and it could be used for 14 weeks without any measurable changes in the slope. The potentiometric selectivity coefficients data revealed negligible interference from 16 common anions. It was successfully applied for the direct determination of monohydrogenphosphate in fertilizer samples and, as an indicator electrode, in potentiometric titration of HPO42− ion with barium nitrate.  相似文献   

18.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

19.
Two digestion-free methods for trace analysis of boron nitride based on graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma spectrometry optical emission (ETV-ICP-OES) using direct solid sampling have been developed and applied to the determination of Al, Ca, Cr, Cu, Fe, Mg, Mn, Si, Ti and Zr in four boron nitride materials in concentration intervals of 1–23, 54–735, 0.05–21, 0.005–1.3, 1.6–112, 4.5–20, 0.03–1.8, 6–46, 38–170 and 0.4–2.3 μg g− 1, respectively. At optimized experimental conditions, with both methods, effective in-situ analyte/matrix separation was achieved and calibration could be performed using calibration curves measured with aqueous standard solutions. In solid sampling GFAAS, before sampling, the platform was covered with graphite powder and, for determination of Si, also the Pd/Mg(NO3)2 modifier was used. In the determination of all analyte elements by solid sampling ETV-ICP-OES, Freon R12 was added to argon carrier gas. For solid sampling GFAAS and ETV-ICP-OES, the achievable limits of detection were within 5 (Cu)–130 (Si) ng g− 1 and 8 (Cu)–200 (Si) ng g− 1, respectively. The results obtained by these two methods for four boron nitride materials of different purity grades are compared each with the other and with those obtained in analysis of digests by ICP-OES. The performance of the two solid sampling methods is compared and discussed.  相似文献   

20.
Biswas S  Chowdhury B  Ray BC 《Talanta》2004,64(2):308-312
A highly sensitive and virtually specific method has been developed for the trace and ultra trace 5 ng ml−1-1 μg ml−1 fluorimetric analysis of nitrite. The method is based on the quenching action of nitrite on the native fluorescence of murexide (ammonium purpurate) [λex=349.0 nm, λem=444.5 nm] in the acid range of 0.045-0.315 (M) H2SO4. The method is very precise and accurate (S.D.=±0.4877 and R.S.D.=0.4878% for the determination of 0.1 μg ml−1 of nitrite in 11 replicates). Relatively large excesses of over 35 cations and anions do not interfere. The proposed technique has been successfully applied for the determination of nitrite and nitrate in ground water, surface water and sea water, nitrite in soil and nitrate in forensic samples. The method has also been extended for the analysis of NOx in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号