首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化合物库的组合技巧和组合合成   总被引:2,自引:0,他引:2  
喻爱明  杨华铮 《有机化学》1998,18(2):186-191
从化合物库的组合技巧和组合合成方法两个方面探讨了组合化学及其在药物开发中的应用。  相似文献   

2.
One should not underestimate the capability of the combinatorial method in solid-state chemistry; this is the opinion of the author. Combinatorial chemistry can provide a large number of new compounds, but once the components that are interesting for a certain application have been successfully selected, the techniques of conventional catalysis and materials research are required. The strengths of conventional chemistry lie in the optimization, systematic modification, and improvement of new lead structures. In contrast, discovery is the potential strength of combinatorial chemistry. Careful design is most important for the synthesis of useful libraries, since the diversity of the periodic table is much too large to be accessed comprehensively or systematically by such large libraries.  相似文献   

3.
组合化学、分子库与新药研究   总被引:6,自引:1,他引:5  
刘刚  恽榴红  王建新 《化学进展》1997,9(3):223-228
组合化学是进入90 年代以来寻找及优化新药先导化合物的主要研究方法, 其特点是改变了传统的逐一合成、逐一纯化、逐一筛选的模式, 而是以合成和筛选化学库的形式完成寻找及优化药物先导化合物, 极大地加快了药物先导化合物出现的速度。本文就目前有关组合化学研究的基本理论、基本方法、发展趋势、研究成果以及我国应当采取的措施进行了综述。  相似文献   

4.
Virtual screening is increasingly being used in drug discovery programs with a growing number of successful applications. Experimental methodologies developed to speed up the drug discovery processes include high-throughput screening and combinatorial chemistry. The complementarities between computational and experimental screenings have been recognized and reviewed in the literature. Computational methods have also been used in the combinatorial chemistry field, in particular in library design. However, the integration of computational and combinatorial chemistry screenings has been attempted only recently. Combinatorial libraries (experimental or virtual) represent a notable source of chemically related compounds. Advances in combinatorial chemistry and deconvolution strategies, have enabled the rapid exploration of novel and dense regions in the chemical space. The present review is focused on the integration of virtual and experimental screening of combinatorial libraries. Applications of virtual screening to discover novel anticancer agents and our ongoing efforts towards the integration of virtual screening and combinatorial chemistry are also discussed.  相似文献   

5.
Combinatorial chemistry has deeply impacted the drug discovery process by accelerating the synthesis and screening of large numbers of compounds having therapeutic and/or diagnostic potential. These techniques offer unique enhancement in the potential identification of new and/or therapeutic candidates. Our efforts over the past 10 years in the design and diversity-oriented synthesis of low molecular weight acyclic and heterocyclic combinatorial libraries derived from amino acids, peptides, and/or peptidomimetics are described. Employing a "toolbox" of various chemical transformations, including alkylation, oxidation, reduction, acylation, and the use of a variety of multifunctional reagents, the "libraries from libraries" concept has enabled the continued development of an ever-expanding, structurally varied series of organic chemical libraries.  相似文献   

6.
Combinatorial chemistry has produced libraries of millions of compounds in the last decade. Screening of those compounds, unfortunately, has not yet yielded as many new drug candidates as initially expected. Among a number of possible reasons, one is that many libraries combinatorial chemistry produced in the early periods are of the nature of linear, flat, and flexible molecules such as peptides and oligonucleotides, which do not have the desired properties to selectively interact with their targets to yield high quality hits and leads. In order to increase the number of quality hits and leads, rigid, structural featurerich and drug-like compound libraries are highly desirable. Design and development of structural features-rich and natural product-like combinatorial libraries, as well as high speed library production using modern solution and solid phase synthesis techniques such as IRORI's Directed Sorting technology, will be discussed.  相似文献   

7.
Combinatorial chemistry is a powerful tool to enhance drug discovery efforts in the pharmaceutical industry. One type of combinatorial chemistry, parallel synthesis, is now widely used to prepare numerous compounds of structural diversity. A novel high-throughput method for quality control of parallel synthesis libraries has been developed. The method uses flow injection MS, for proof of structure and estimation of purity, and a novel direct injection CLND technique for quantitation of amount. Following the synthesis of a small molecule library, compounds analyzed using this technique were characterized by mass spectrometry, and an accurate concentration of the compound was assessed by CLND. Characterization of one compound is completed in 60 s, allowing for up to 1000 compounds to be analyzed in a single day. The data is summarized using pass/fail criteria using internally developed software.  相似文献   

8.
Standard chemistry prescribes the conversion of one or two compounds into their products. In contrast, Eintopf (one-pot) multicomponent reactions (MCRs) involve at least three different compounds. One-pot MCRs are a useful tool in combinatorial chemistry: From a mixture of educts a large number of products can be simultaneously formed in liquid phase, called a soluble molecular library. The member compounds of such libraries are investigated simultaneously for desired properties, e.g. antibiotic activity. The main constraint is, that the underlying chemistry must not produce unknown side reactions and must lead to a broad spectrum of stable products with high yields. Isocyanide multicomponent chemistry allows the generation of soluble libraries of very different sizes, which are easy to screen for biological or pharmaceutical efficacy using the algorithms presented. Products can easily be enumerated and the kinetics of the isocyanide chemistry is simple to investigate. Combinatorial chemistry is capable of generating and optimizing leads faster and with fewer resources than by conventional means. Combinatorial chemistry based on isocyanide chemistry is by far the most important and most impressive technique in use today to reducing time and costs associated with lead generation and optimization during the drug discovery process. The simplicity of the reaction conditions involved means that the generation and screening of libraries can be automated.  相似文献   

9.
催化不对称反应最新进展(Ⅱ)-组合化学方法之 应用   总被引:3,自引:0,他引:3  
丁奎岭 《有机化学》2000,20(5):613-622
组合化学技术已经成为药物、新型固体材料和催化剂合成、评价和筛选的一种有力工具,最近它在催化不对称反应的手性催化剂高效率合成与筛选方面的应用也受到了重视,本文将综述组合化学技术在发展不对称合成新型催化剂方面的应用。第一部分主要介绍手性催化剂(或配体)库的固相平行合成;第二部分重点总结了所建立的手性催化剂库的高效率评价技术及其应用。  相似文献   

10.
Combinatorial preparation and HTS of arrays of compounds have increased the speed of drug discovery. A strong impulse in this field has come by the introduction of the solid phase synthesis method that, through automation and miniaturization, has paved the way to the preparation of large collections of compounds in compact and trackable formats. Due to the well established synthetic procedures, peptides have been largely used to develop the basic concepts of combinatorial chemistry and peptide libraries are still successfully employed in screening programs. However, peptides generally do not fulfil the requirements of low conformational flexibility, stability and bioavailability needed for good drug candidates and peptide leads with high potency and selectivity are often made "druggable" by conversion to more stable structures with improved pharmacological profiles. Such an approach makes the screening of peptide libraries still a valuable tool for drug discovery. We propose here a panoramic review of the most common methods for the preparation and screening of peptide libraries and the most interesting findings of the last decade. We also report on a new approach we follow in our laboratory that is based on the use of "simplified" libraries composed by a minimum number of non-redundant amino acids for the assembly of short peptides. The choice of amino acids is dictated by diversity in lipophilicity, MW, charge and polarity. Newly identified active sequences are then modified by preparing new variants containing analogous amino acids, so that the chemical space occupied by the excluded residues can be explored. This approach offers the advantage of simplifying the synthesis and deconvolution of libraries and provides new active compounds with a molecular size similar to that of small molecules, to which they can be easily converted.  相似文献   

11.
Combinatorial chemistry is widely used in drug discovery. Once a lead compound has been identified, a series of R-groups and reagents can be selected and combined to generate new potential drugs. The combinatorial nature of this problem leads to chemical libraries containing usually a very large number of virtual compounds, far too large to permit their chemical synthesis. Therefore, one often wants to select a subset of "good" reagents for each R-group of reagents and synthesize all their possible combinations. In this research, one encounters some difficulties. First, the selection of reagents has to be done such that the compounds of the resulting sublibrary simultaneously optimize a series of chemical properties. For each compound, a desirability index, a concept proposed by Harrington,(20) is used to summarize those properties in one fitness value. Then a loss function is used as objective criteria to globally quantify the quality of a sublibrary. Second, there are a huge number of possible sublibraries, and the solutions space has to be explored as fast as possible. The WEALD algorithm proposed in this paper starts with a random solution and iterates by applying exchanges, a simple method proposed by Fedorov(13) and often used in the generation of optimal designs. Those exchanges are guided by a weighting of the reagents adapted recursively as the solutions space is explored. The algorithm is applied on a real database and reveals to converge rapidly. It is compared to results given by two other algorithms presented in the combinatorial chemistry literature: the Ultrafast algorithm of D. Agrafiotis and V. Lobanov and the Piccolo algorithm of W. Zheng et al.  相似文献   

12.
In combination with high throughput screening, combinatorial organic synthesis of large numbers of pharmaceutically interesting compounds may revolutionize the drug discovery process. Although combinatorial organic synthesis on solid supports is a useful approach, several groups are focusing their research efforts on liquid-phase combinatorial synthesis by the use of soluble polymer supports to generate libraries. This macromolecular carrier, in contrast to an insoluble matrix, is soluble in most organic solvents and has a strong tendency for precipitation in particular solvents. Liquid-phase combinatorial synthesis is a unique approach since homogeneous reaction conditions can be applied, but product purification similar to the solid-phase method can be carried out by simple filtration and washing. This method combines the positive aspects of classical solution-phase chemistry and solid-phase synthesis. This review examines the recent applications (1995-1999) of soluble polymer supports in the synthesis of combinatorial libraries.  相似文献   

13.
Combinatorial chemistry provides a powerful tool for the rapid creation of large numbers of synthetic compounds. Ideally, these libraries should be a rich source of bioactive molecules, but there is the general feeling that the initial promise of combinatorial chemistry has not yet been realized. In particular, enthusiasm for conducting unbiased (non-structure-guided) screens of large libraries for protein or RNA ligands has waned. A central challenge in this area is to devise methods for the synthesis of chemically diverse, high-quality libraries of molecules with many of the desirable features of natural products. These include diverse functionality, a significant representation of chiral sp(3) centers that provide conformational bias to the molecule, significant skeletal diversity, and good pharmacokinetic properties. However, these libraries must be easy to make from cheap, readily available building blocks, ideally those that would support convenient hit optimization/structure reactivity relationship studies. Meeting these challenges will not be easy. Here I review some recent advances in this area and provide some thoughts on likely important developments in the next few years.  相似文献   

14.
In recent years, combinatorial library synthesis for drug discovery begins to migrate from library synthesis solely dictated by chemistry availability to design and synthesis of libraries with more drug-like properties. Lipinski's rule of five has been used to evaluate drug-like properties of individual compound; recently LibProTM, a new computation program has been developed at Pharmacopeia to evaluate durg-like properties of libraries. By using LibPrpTM, chemists at Pharmacopeia are able to obtain information of molecular weight and ClogP distribution of a library, and percentage of library members that violate Lipinski's rule after input structures of synthons for each combinatorial step. Currently, a "virtual library design” approach that is to calculate properties of a library at conceptual phase of the library design has been used to predetermine the value of the library. Also a new computer program used to predict "Absorption” of compounds will also be discussed.  相似文献   

15.
One of the key elements in the drug discovery process is the use of automation to synthesize libraries of compounds for biological screening. The "split-and-mix" approaches in combinatorial chemistry have been recognized as extremely powerful techniques to access large numbers of compounds, while requiring only few reaction steps. However, the need for effective encoding/deconvolution strategies and demands for larger amounts of compounds have somewhat limited the use of these techniques in the pharmaceutical industry. In this paper, we describe a concept of directed sort and combine synthesis with spatially arranged arrays of macroscopic supports. Such a concept attempts to balance the number of reaction steps, the confidence in compound identity, and the quantity of synthesized compounds. Using three-dimensional arrays of frames each containing a two-dimensional array of macroscopic solid supports, we have conceptualized and developed a modular semiautomated system with a capacity of up to 100 000 compounds per batch. Modularity of this system enables flexibility either to produce large diverse combinatorial libraries or to synthesize more focused smaller libraries, both as single compounds in 12-15 micromol quantities. This method using sortable and spatially addressed arrays is exemplified by the synthesis of a 15 360 compound library.  相似文献   

16.
In the continuing effort to find small molecules that alter protein function and ultimately might lead to new drugs, combinatorial chemistry has emerged as a very powerful tool. Contrary to original expectations that large libraries would result in the discovery of many hit and lead structures, it has been recognized that the biological relevance, design, and diversity of the library are more important. As the universe of conceivable compounds is almost infinite, the question arises: where is a biologically validated starting point from which to build a combinatorial library? Nature itself might provide an answer: natural products have been evolved to bind to proteins. Recent results in structural biology and bioinformatics indicate that the number of distinct protein families and folds is fairly limited. Often the same structural domain is used by many proteins in a more or less modified form created by divergent evolution. Recent progress in solid-phase organic synthesis has enabled the synthesis of combinatorial libraries based on the structure of complex natural products. It can be envisioned that natural-product-based combinatorial synthesis may permit hit or lead compounds to be found with enhanced probability and quality.  相似文献   

17.
Since oxidative cellular damage contributes to the development of cancers, heart disease and ageing, the synthesis of antioxidative agents which are able to either prevent or mitigate oxidative stress to cells is an important area of investigation. Combinatorial chemistry has had a profound impact on the discovery and optimisation of potential lead compounds, especially in the medicinal field. This review details recent examples of combinatorial chemistry dealing with the synthesis of novel antioxidants with an emphasis on solid phase compound synthesis and parallel library synthesis.  相似文献   

18.
Multi-component reactions (MCRs) constitute a methodology to shorter syntheses of natural products or complex molecules for drug discovery. Due to the large number of accessible compounds, this type of chemistry has become very popular between scientists who are working in the area of combinatorial chemistry. Over the last decade combinatorial chemistry has evolved from the synthesis of great quantity of simple compounds to the parallel synthesis of complex molecules with a widely varied structure. MCRs are ideally suited for this trend, being free of limitations of a traditional multistep synthesis. The close connection and interference of multicomponent reactions and combinatorial chemistry are discussed in this review.  相似文献   

19.
Recognizing the potential of combinatorial chemistry to accelerate drug discovery and development, most pharmaceutical and related industries are seriously looking toward combinatorial synthesis of compounds in order to facilitate the identification of 'lead' molecules. In particular, solid phase synthesis is the core technology for combinatorial chemistry and is widely used for generating libraries of structurally related compounds. Since many drugs contain the nitrogen heterocyclic component and since heterocycles possess a high order of structural diversity, a precise overview of recent progress in the combinatorial synthesis of nitrogen heterocycles using solid phase methodology would be useful. Since the progress in solid phase synthesis of organic molecules has been reviewed regularly from 1992 to 1998, only the development of solid phase combinatorial synthetic approaches of small nitrogen heterocycles since 1999 will be reviewed here. This review describes the solid phase synthesis of azepanes, benzodiazepines, benzimidazoles, benzothiazepines, cinnolines, indolizines, beta lactams, oxazepins, oxazoles including benzisooxazoles, hydantoins, piperidines, pyrimidines, pyrazolones, quinolones, trizolopyridazines and thiazoles.  相似文献   

20.
Current drug discovery using combinatorial chemistry involves synthesis followed by screening, but emerging methods involve receptor-assistance to combine these steps. Adding stoichiometric amounts of receptor during library synthesis alters the kinetics or thermodynamics of the synthesis in a way that identifies the best-binding library members. Three main methods have emerged thus far in receptor-assisted combinatorial chemistry: dynamic combinatorial libraries, receptor-accelerated synthesis, and a new method, pseudo-dynamic libraries. Pseudo-dynamic libraries apply both thermodynamics and kinetics to amplify library members to easily observable levels, and attain selectivity heretofore unseen in receptor-assisted systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号