首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
采用离子束多靶溅射技术控制膜层结构制备出二维多层PtRu/PtNd纳米合金薄膜作为微型直接甲醇燃料电池(DMFCs)阳极催化电极材料. 应用X射线光电子能谱(XPS)、原子力显微镜(AFM)、X射线衍射(XRD)、掠入射X射线衍射(GIXD)研究了薄膜表面的化学状态、形貌以及薄膜表层、次表层和体相的结构,并用CO-stripping伏安法、循环伏安法(CV)、线性扫描伏安法(LSV)、计时电流法(CA)等电化学方法测试薄膜催化剂的电化学活性比表面积及其对甲醇的电催化氧化. 结果表明, 多次交替沉积制备的PtRu/PtNd薄膜, 由于溅射产生的Pt+、Ru+和Pt+、Nd+之间的相互作用, 使薄膜表面的化学状态和膜层结构发生变化, 其衍射谱峰呈现异常宽化, Pt与Nd之间产生电子转移, 证实了PtRu/PtNd纳米合金薄膜是一种具有特殊膜层结构和电子结构的二维多层PtRu/PtNd纳米合金薄膜, 电化学活性比表面积高达115.00m2 ·g-1, 在酸性溶液中电催化氧化甲醇的活性显著提高.  相似文献   

2.
纳米材料的结构和化学成分对其催化性能的显著影响已经得到验证.因此,本文通过一种简易的蚀刻方法,合成出具有均匀合金结构且尺寸和形貌均一的Pt-Cu纳米枝晶(NDs)作为高效氧还原(ORR)催化剂.其树枝状形貌的形成得益于由Br-/O2氧化蚀刻剂引起的蚀刻效应.通过改变Pt/Cu前驱体的比例可以容易地调节Pt-Cu NDs的Pt/Cu原子比,而不会使其树枝状形貌发生改变.活性最高的碳载Pt1Cu1NDs(Pt1Cu1NDs/C)的面积比活性为1.17 mA·cm-2@0.9V(vs.RHE),约为商业Pt/C的5.32倍.此外,Pt1Cu1NDs/C还具有卓越的电化学耐久性,即使在经过加速衰减实验的12000个电势循环后仍保持其优异的ORR催化活性.Pt1Cu1NDs/C优异的ORR催化活性和电化学耐久性得益于由其合金结构和枝晶形貌产生的电子效应和结构效应.  相似文献   

3.
用CeO2修饰炭粉做载体,使用有机溶胶法还原PdPt二元合金的方法制备了一系列PdPt/CeO2-C催化剂.借助电化学测试,探讨催化剂中不同Pd与Pt原子比例的PdPt二元合金和不同含量的CeO2对于甲酸电氧化催化活性的影响.不断减少PdPt合金中Pt的比例可以促使甲酸氧化的起始电位前移,当Pd:Pt=15:1时氧化电流出现极值;同时,随着催化剂中CeO2含量的增加,催化剂对于HCOOH氧化的电流密度增加,当含量为15%时达到最大值.相对于Pd/C催化剂,在Pd15Pt1/15CeO2-C催化剂表面的甲酸氧化反应起始电位负移至少0.1V,氧化的电流密度提高60%以上.结合X射线衍射(XRD),X射线光电子能谱(XPS),透射电镜(TEM)和热重(TG)等测试数据可以发现,当极少量的Pt与Pd形成合金,Pt与Pd之间产生电子效应,使得合金表面HCOOH氧化的过电位降低;而CeO2的添加不仅有助于PdPt二元合金的分散,更有可能改变甲酸在PdPt表面的氧化反应路径,发挥双功能机理.  相似文献   

4.
PtCr合金的溶液制备及其电化学性质分析   总被引:1,自引:0,他引:1  
袁泉  潘牧  袁润章 《化学学报》2006,64(3):245-248
催化剂性能的高低直接决定了燃料电池性能的好坏. 采用Pt基合金不仅能够降低催化剂Pt的载量, 而且往往能够提高催化剂的性能. 本工作用Cr作为合金化元素, 通过液相共沉淀的方式制备了不同比例的碳载PtCr合金催化剂. 采用高分辨透射电镜(HRTEM), 扫描电镜(SEM)等技术对合金催化剂的物理性质进行了测试. 结果表明, 获得的PtCr/C催化剂均匀地分散在Vulcan XC-72碳载体上, 粒度小于4 nm. 通过电化学测试, 研究了不同比例PtCr合金的电化学催化性能. 循环伏安测试表明, 本实验条件合成的合金催化剂在Pt/Cr原子比为2/1的时候, 对氧还原动力学有最佳的催化性能.  相似文献   

5.
孙立智  吕浩  闵晓文  刘犇 《应用化学》2022,39(4):673-684
合金化可以调节贵金属纳米材料的物理化学性质,从而显著提升它们的电催化性能。尽管合金化在过去的20多年里已取得诸多成果,但是如何充分发挥纳米合金的组分优势仍需深入的探究。本研究通过一步溶液相合成法实现了类金属硼(B)合金化的钯基介孔纳米催化剂材料的合成,同时探究了B原子的组分优势和介孔形貌的结构优势在碱性介质中电化学甲醇氧化反应(MOR)的协同作用。最优PdCuB介孔纳米催化剂表现出优异的电化学MOR活性和稳定性。机理研究表明,优异的催化活性源于B原子在Pd基介孔纳米催化剂中的积极协同作用;该协同作用通过电子效应(改变Pd的表面电子结构从而减弱CO基中间体的吸附)和双功能效应(促进OH_(2)的吸附从而氧化CO基中间体)在动力学上加速了有毒CO基中间体的去除(提高甲醇氧化的决速步骤)。同时,B原子的间隙插入和介孔结构抑制了物理奥斯特瓦尔德(Ostwald)熟化过程,显著增加了催化剂的稳定性。  相似文献   

6.
采用电化学沉积技术在3-氨丙基三甲基硅氧烷修饰的多孔氧化铝膜板中制备了具有不同Pt/Ru原子比的双元Pt/Ru阵列纳米管电极(NTAEs)。分别用X-射线衍射和扫描电镜表征了催化剂结构和形态。电化学结果表明:通过控制前驱沉积液的浓度可得到不同PtRu原子比的NTAEs。所制备的Pt 或 Pt/Ru合金阵列纳米电极的真实表面积大,催化活性强,有利于物质传输,对甲醇电氧化显示出显著的催化性能。实验中还系统研究了催化剂组成与CO和CH3OH电催化氧化性能的关系,发现Pt/Ru=50:50的阵列纳米管电极对CO电氧化显示出最好的催化活性;对甲醇电氧化,则Ru原子比为40%的催化剂显示最佳催化性能。  相似文献   

7.
碳纳米管电极上原位沉积Pt纳米颗粒   总被引:1,自引:0,他引:1  
 本文利用原位离子交换法制备了碳纳米管(CNTs)载铂(Pt/CNTs)电极. X射线光电子能谱分析表明, Pt通过离子交换载于电化学功能化的CNTs表面. 扫描电镜照片显示, Pt高度分散于CNTs表面. X射线衍射分析表明, Pt的粒径约为4.0 nm. 离子交换法所制Pt/CNTs电极的电化学表面积和Pt的利用率均大于传统Pt/CNTs电极(Pt粒径约为2.5 nm), 其对氧还原的催化活性高于传统电极. 这归因于离子交换法所制电极的特殊结构,即Pt普遍载于电化学活性位上.  相似文献   

8.
廖宇翔  李俊  张世明  陈胜利 《催化学报》2021,42(7):1108-1116,中插12-中插15
燃料电池作为一种清洁、高效的能量转换装置,其大规模应用受到阴极氧还原反应(ORR)动力学缓慢以及铂资源稀缺和价格高昂等的极大制约.尽管研究人员在过去几十年中付出了巨大努力,但研制高效、耐用的低Pt合金催化剂仍亟待突破.近年的研究表明,Pt的一些高指数晶面能够表现出比Pt(111)晶面更高的ORR活性,尤其是Pt(332),Pt(331)和Pt(554)等.同时,合金化能够通过电子与几何效应减弱含氧物种在Pt表面的吸附能,提升Pt合金催化剂的ORR活性.因此,高指数晶面和合金化的结合将是设计开发高性能电催化剂的有效手段.本文提出一种气氛调控的液相合成方法,通过在油胺中加热还原Pt化合物和Cu化合物,不添加其它保护剂,仅通过反应气氛的调控,成功制备了不同形貌的Pt-Cu合金纳米结构(纳米多脚、纳米凹立方体、纳米枝晶).通过反应前期引入氧化性气氛随后切换为惰性气氛的调控策略,合成具有高指数晶面的具有纳米枝晶结构的PtCu3合金;进一步对其进行电化学去合金化形成富Pt壳层,既保持其纳米枝晶形貌和高指数晶面,又形成具有梯度组成的PtCu3@Pt3Cu@Pt纳米枝晶.相比而言,全程惰性气氛下生长得到纳米多脚结构,全程氧化性气氛下生长则得到纳米凹立方体.电化学测试结果表明,在0.1 M HClO4电解液中,PtCu3@Pt3Cu@Pt纳米枝晶展现出较高的ORR活性,在0.9 V(vs.RHE)处的Pt质量活性和面积活性高达1.55 A mgPt-1和2.4 mA cmPt-2,分别为商业Pt/C催化剂的14倍和24倍;此外,PtCu3@Pt3Cu@Pt纳米枝晶具有良好的电化学稳定性能,经0.7~1.1 V(vs.RHE)电势范围内循环5000圈,其催化活性保持稳定.DFT计算表明,Cu合金效应和高指数晶面结构共同增强了Pt的ORR活性,其中PtCu3@Pt3Cu@Pt纳米枝晶高指数晶面台阶位点的氧结合能接近最优值,从而表现出火山顶点附近的ORR活性.  相似文献   

9.
以氧化铟锡(ITO)透明导电膜玻璃为基底,电化学恒电位法制备AuPd合金纳米粒子.系统考察了AuPd纳米粒子的组成和不同制备条件对其结构和电催化性能的影响.运用扫描电子显微镜(SEM)、X-射线能量散射谱(EDX)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)和电化学方法进行表征.结果表明,制备的AuPd合金中Au:Pd元素比与投料比基本一致,纳米粒子分散均匀;AuPd合金纳米粒子对乙醇电氧化的催化活性和稳定性显著高于纯Pd纳米粒子.当沉积电位-0.3 V、Pd:Au=3:1时,Au1Pd3纳米粒子对乙醇电氧化表现出最高的催化活性和稳定性:其对乙醇氧化峰值电流密度是相同条件下制备的Pd纳米粒子的7.7倍,稳定测试1800 s时乙醇氧化的电流密度(1.05 mA cm~(-2))是Pd纳米粒子(0.02 mA cm~(-2))的52.5倍.  相似文献   

10.
陈卫祥  赵杰  LEE Jim-Yang  刘昭林 《化学学报》2004,62(17):1590-1594
利用微波辐射加热技术快速合成了XC-72碳和碳纳米管(CNTs)负载的PtRu合金纳米粒子,合金负载的质量分数为20%,Pt和Ru的原子比接近于1:1.透射电镜观察表明微波合成的PtRu合金纳米粒子具有细小的粒径和狭窄的尺寸分布,所合成的PtRu合金纳米粒子高度分散在XC-72碳和CNTs的表面,其平均粒径分别为3.3 nm和2.8 nm.电化学实验表明微波合成的PtRu/XC-72和PtRu/CNTs纳米催化剂比用湿化学方法以KBH4还原制备的催化剂对甲醇的电化学氧化具有更高的催化活性.  相似文献   

11.
本文利用欠电位沉积亚单层的Cu及Pt置换取代Cu的方法, 制备了具有不同表面元素组成的Pd/Pt二元合金电极(用Pd/Ptx表示, x指欠电位沉积Cu-Pt置换取代Cu过程的次数),并对其表面元素组成、氧还原性能进行了表征. 在控制欠电位沉积Cu的下限电位恒定(0.34 V)的前提下, 表面Pt/Pd的元素组成比通过重复欠电位沉积Cu及Pt置换取代Cu的次数(1~5次)来可控地调变. 光电子能谱(XPS) 以及红外光谱实验表明,Pd/Ptx电极表层区的Pt:Pd元素组成比随着Pt沉积次数增加而增加, 对Pd/Pt4电极, 在电极表层区约2~3 nm内的Pt/Pd的原子比大约是1:4,而最表层裸露Pd原子的比例仍在20%以上。循环伏安结果显示, 随着Pt沉积次数的增加(1-5次), Pd/Ptx电极表面越不易被氧化。氧还原测试结果显示随着Pt沉积次数的增加(1~4次), Pd/Ptx二元金属电极的氧还原活性依次增加, 经过第3次沉积后其氧还原活性已优于纯Pt,而经4次以上沉积,其氧还原活性基本不变。在其它反应条件相同条件的前提下, Pd/Pt4电极上氧还原的半波电位与纯Pt相比右移约25 mV。结合本文与文献的实验结果,我们初步认为Pd/Ptx二元金属体系氧还原性能改善主要源自表层Pd原子导致其邻近的Pt原子上含氧物种吸附能的降低.  相似文献   

12.
A nanoporous (NP) PdCo alloy with uniform structure size and controllable bimetallic ratio was fabricated simply by one‐step mild dealloying of a PdCoAl precursor alloy. The as‐made alloy consists of a nanoscaled bicontinuous network skeleton with interconnected hollow channels that extend in all three dimensions. With a narrow ligament size distribution around 5 nm, the NP PdCo alloy exhibits much higher electrocatalytic activity towards the oxygen‐reduction reaction (ORR) with enhanced specific and mass activities relative to NP Pd and commercial Pt/C catalysts. A long‐term stability test demonstrated that NP PdCo has comparable catalytic durability with less loss of ORR activity and electrochemical surface area than Pt/C. The NP PdCo alloy also shows dramatically enhanced catalytic activity towards formic acid electrooxidation relative to NP Pd and Pd/C catalysts. The as‐made NP PdCo holds great application potential as a promising cathode as well as an anode electrocatalyst in fuel cells with the advantages of superior catalytic performance and easy preparation.  相似文献   

13.
Chemical dealloying of Pt binary alloy precursors has emerged as a novel and important preparation process for highly active fuel cell catalysts. Dealloying is a selective (electro)chemical leaching of a less noble metal M from a M rich Pt alloy precursor material and has been a familiar subject of macroscale corrosion technology for decades. The atomic processes occurring during the dealloying of nanoscale materials, however, are virtually unexplored and hence poorly understood. Here, we have investigated how the morphology and intraparticle composition depend on the particle size of dealloyed Pt-Co and Pt-Cu alloy nanoparticle precursor catalysts. To examine the size-morphology-composition relation, we used a combination of high-resolutionscanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), electron energy loss (EEL) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), and surface-sensitive cycling voltammetry. Our results indicate the existence of three distinctly different size-dependent morphology regimes in dealloyed Pt-Co and Pt-Cu particle ensembles: (i) The arrangement of Pt shell surrounding a single alloy core ("single core-shell nanoparticles") is exclusively formed by dealloying of particles below a characteristic diameter d(multiple cores) of 10-15 nm. (ii) Above d(multiple cores), nonporous bimetallic core-shell particles dominate and show structures with irregular shaped multiple Co/Cu rich cores ("multiple cores-shell nanoparticles"). (iii) Above the second characteristic diameter d(pores) of about 30 nm, the dealloyed Pt-Co and Pt-Cu particles start to show surface pits and nanoscale pores next to multiple Co/Cu rich cores. This structure prevails up to macroscopic bulklike dealloyed particles with diameter of more than 100 nm. The size-morphology-composition relationships link the nano to the macro scale and provide an insight into the existing material gap of dealloyed nanoparticles and highly porous bulklike bimetallic particles in corrosion science.  相似文献   

14.
采用去合金化法制备了多孔铜(PC), 并以此为还原剂和模板与含有贵金属离子的溶液进行置换反应, 简单有效地制备了多孔M/PC(M=Ag, Au, Pt, Pd)双金属催化剂, 并对样品的形貌\, 结构和化学组成进行了表征, 利用苯甲醇气相选择性催化氧化实验评价了其催化性能. 实验结果表明, 所制备的多孔铜基催化剂具有良好的双金属协同催化效应, 对苯甲醇气相选择性氧化具有很好的催化活性和选择性, 其中Ag/PC具有最优的催化性能.  相似文献   

15.
We report simple synthesis of ternary Pt–Au–Cu catalysts consisting of active Pt-rich shell and Pt transition-metal alloy core for use as highly active and durable electrocatalysts in oxygen reduction reactions. The ternary Pt–Au–Cu catalysts were synthesized by chemical coreduction followed by thermal treatment and chemical dealloying. During synthesis, thermal treatment formed metal particles into high-degree alloys, and chemical dealloying led to selective dissolution of soluble Cu species from the outer surface layer of the thermally treated alloy particles, resulting in Pt-based alloys@Pt-rich surface core–shell configuration. Compared with a commercial Pt/C catalyst, our Pt1?xAu x Cu3/C-AT catalysts exhibited approximately 2.4-fold enhanced performance in oxygen reduction reactions. Among the catalysts employed in this work, Pt0.97Au0.3Cu3/C-AT showed the highest performance in terms of mass activity, specific activity, and electrochemically active surface area loss with negligible change during 10,000 potential cycles. The synthesis details, electrochemical characteristics, oxygen reduction reaction performance, and durability of the chemically dealloyed ternary Pt–Au–Cu catalysts are presented and discussed.  相似文献   

16.
Carbon supported Palladium–Nickel alloys with various compositions (Pd–Ni/C) were synthesized by chemical reduction of the co-precipitated Pd and Ni hydroxides on carbon. The structure of these alloys was characterized using X-ray diffraction (XRD) analysis. The catalytic activity of Pd–Ni/C for oxygen reduction reaction (ORR) in alkaline media was studied using a glassy carbon rotating disk electrode (RDE). Pd/C showed ORR activity close to that of Pt/C. The activities of Pd–Ni (3:1)/C and Pd–Ni (1:1)/C were found unchanged compared with that of Pd/C. Ni/C showed about 175 mV lower onset potential than Pt/C, and the activity of Pd–Ni (1:3)/C was observed to be between that of Pd/C and Ni/C.  相似文献   

17.
分别利用液相热解法和浸渍还原法制备了碳载钯纳米催化剂(Pd/C),并研究了其对氧还原反应的电催化活性。与浸渍还原法相比,液相热解法得到的Pd/C催化剂虽然粒径较大,但表现出较好的氧还原反应(ORR)活性和稳定性.在所制备的Pd/C催化剂基础上,通过置换欠电势沉积的Cu原子单层,获得了Pt单层修饰的Pd/C催化剂,其ORR活性较Pd/C催化剂有显著提高,且与纯Pt/C催化剂接近,而其耐久性则较纯Pt/C催化剂有显著提升,显示出Pt单层催化剂的潜在优势.  相似文献   

18.
Monodisperse bimetallic Pd-Cu nanoparticles with controllable size and composition were synthesized by a one-step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd(85)-Cu(15), Pd(56)-Cu(44), and Pd(39)-Cu(61). The nanoparticles were separated from the solution mixture by extraction with non-polar solvents, such as n-hexane. Monodisperse bimetallic Pd-Cu nanoparticles with narrow size-distribution were obtained without the need for a size-selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as-prepared nanoparticles were loaded onto a Vulcan XC-72 carbon support. Supported bimetallic Pd-Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd-Cu catalyst that contained 15?% Cu, the activity was even comparable to the state-of-the-art commercially available Pt/C catalysts. A STEM-HAADF study indicated that the formation of random solid-solution alloy structures in the bimetallic Pd(85)-Cu(15)/C catalysts played a key role in improving the electrochemical activity.  相似文献   

19.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

20.
The chemical dealloying mechanism of bimetallic Pt–Co nanoparticles (NPs) and enhancement of their electrocatalytic activity towards the oxygen reduction reaction (ORR) have been investigated on a fundamental level by the combination of X‐ray absorption spectroscopy (XAS) and aberration‐corrected scanning transmission electron microscopy (STEM). Structural parameters, such as coordination numbers, alloy extent, and the unfilled d states of Pt atoms, are derived from the XAS spectra, together with the compositional variation analyzed by line‐scanning energy‐dispersive X‐ray spectroscopy (EDX) on an atomic scale, to gain new insights into the dealloying process of bimetallic Pt–Co NPs. The XAS results on acid‐treated Pt–Co/C NPs reveal that the Co–Co bonding in the bimetallic NPs dissolves first and the remaining morphology gradually transforms to a Pt‐skin structure. From cyclic voltammetry and mass activity measurements, Pt–Co alloy NPs with a Pt‐skin structure significantly enhance the catalytic performance towards the ORR. Further, it is observed that such an imperfect Pt‐skin surface feature will collapse due to the penetration of electrolyte into layers underneath and cause further dissolution of Co and the loss of Pt. The electrocatalytic activity decreases accordingly, if the dealloying process lasts for 4 h. The findings not only demonstrate the importance of appropriate treatment of bimetallic catalysts, but also can be referred to other Pt bimetallic alloys with transition metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号