首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
超快多维振动光谱技术目前已经被广泛应用到各种凝聚态分子体系中分子的结构以及快速变化动力学过程的测量之中,并有望成为新一代解析分子体系微观结构及超快行为的常规手段。本文从两个主线出发,介绍如何利用超快多维振动光谱技术解析分子体系的三维空间构型。一方面通过测量分子内各个振动模式跃迁偶极矩间的夹角来获得分子体系内不同基团的相对空间取向,并最终确定分子的空间构型。另一方面,通过详细解析分子间振动能量转移的机理,进而将实验中测得的振动能量转移速率转化为分子之间的距离信息。  相似文献   

2.
运用因子群分析法对石墨烯的分子振动模式进行了理论分析,得到石墨烯的分子振动模式,计算出各振动模式的光谱特性.对所建立的石墨烯晶体的布拉维单胞模型采用基于密度泛函理论的第一性原理进行分子振动频率与模式的计算,所得的振动模式数目以及各振动频率的光谱特性同因子群分析方法所得结论一致.结合上述计算结果,通过系统比较石墨与石墨烯之间的红外光谱和拉曼光谱的差别,从理论上解释了具有D6h对称的石墨烯的A2u、E1u红外活性特征振动模式没有在红外光谱中出现的原因.  相似文献   

3.
合成了反丁烯二酰基桥连的3种带不同取代基的卟啉二联体, 通过红外光谱, 紫外-可见光谱, 核磁共振波谱和质谱对化合物的结构进行了确认, 并研究了二联体的表面光电压谱, 荧光光谱和激光拉曼光谱的变化. 结果表明, 取代基的类型对卟啉二联体分子的荧光量子产率有显著影响, 带供电子基团的甲氧基增强了荧光量子产率, 而带吸电子基团的氯则降低了荧光量子产率, 并且吸电子基团的氯比供电子基团的甲氧基对荧光的影响更大. 取代基的电子效应对卟啉二联体的荧光性和激光拉曼光谱有较大影响.  相似文献   

4.
王果  王卫宁 《物理化学学报》2012,28(7):1579-1585
利用太赫兹时域光谱和低频拉曼光谱仪研究了丙氨酸晶体在0.2-2.6 THz 范围内的太赫兹吸收和拉曼散射光谱. 研究表明: 在该低频范围有四个振动模式, 其中两个只具有拉曼活性, 其余两个同时具有红外和拉曼活性. 基于B3LYP杂化密度泛函的自洽场晶体轨道法对丙氨酸周期性结构进行了理论研究和光谱计算. 通过比较实验和理论结果, 指认了实验光谱特征峰所属的不可约表示. 通过理论计算得到的图形, 得出在此低频范围的振动模式主要包含分子间氢键的扭转和摇摆运动.  相似文献   

5.
研究了某些长链碳氢化合物和甾体化合物的C—H伸缩振动谱带的光谱行为差异 .结果发现 ,在低温下 ,甾体化合物的C—H伸缩振动谱带存在复杂的精细结构 ,而长链碳氢化合物的谱带结构却相当简单 .MM 3分子力学计算表明 ,长链碳氢化合物的C—H基团以大规模偶合方式振动 ,其中少数几种振动模式由于采取同步同相振动 ,使其偶极矩变化得到同向加强 ,强度大大增加 ,因而在光谱上掩盖了其他模式的振动 ,造成谱带结构的简单化 .在甾体化合物中 ,C—H基团以局部偶合的方式振动 ,由于不存在同相加强效应 ,不同谱带之间强度差异不大 ,使得谱带存在复杂的精细结构 .造成上述光谱行为差异的一个主要原因是长链碳氢化合物的C—H基团所处的微环境大致相同 ,而甾体化合物的不同C—H基团所处的微环境差异较大 .  相似文献   

6.
利用从头算方法探索蛋白质模型分子——丙氨酸二肽的二级结构布居特性以及体系势能变化. 引入对分子结构敏感的振动探针(酰胺振动吸收带), 借助其光谱表象, 寻求振动光谱参数与分子结构之间的联系. 研究结果表明: 丙氨酸二肽分子处于C7eq构型(Φ/Ψ=-80°/80°)时具有最低能量值, 且分子易形成β折叠、PPII、C5及C7等能量较低的稳定构型. 通过简正模式分析, 得到分子3N-6 个振动模式的吸收光谱, 并通过势能分布分析方法对分子骨架上酰胺振动吸收带的特征振动模式进行了指认. 重点考察分子骨架上酰胺-I带振动光谱参数与分子构型变化之间的相关性, 建立振动光谱参数与蛋白质二级结构之间的联系, 为在化学键水平上研究蛋白质的结构及其发挥作用的机制提供科学依据.  相似文献   

7.
基于从头算分子动力学(Born-oppenheimer molecular dynamics, BOMD)模拟, 构建了环硝胺六氢-1,3,5-三硝基-1,3,5-三嗪(RDX)单分子不同振动模式之间的耦合矩阵, 并计算了在不同加载能量下从低频振动模式到高频振动模式的最优能量传输路径. 结果表明, RDX单分子中—NNO2基团更有利于能量局域化, 振动模式v3v4在从低频振动模式到高频振动模式的能量传输过程中扮演着重要角色. 通过对v3v4两个振动模式的进一步分析发现, 加载能量的不同会导致RDX单分子能量传输路径的不同. 当加载能量较低时, RDX单分子倾向于从低频振动模式到中频振动模式再到高频振动模式的能量传输路径; 当加载能量较高时, 能量更倾向于从低频振动模式直接传输到高频振动模式上. 揭示了RDX分子内振动耦合能量转移的微观机制, 为进一步探索RDX将“机械能”转化为“化学能”的微观过程提供了理论基础.  相似文献   

8.
变温傅里叶红外光谱技术研究硬脂酸C-H伸缩振动   总被引:1,自引:0,他引:1  
采用傅里叶红外光谱技术研究了温度对于硬脂酸C-H伸缩振动、分子脂肪链构象改变和分子间作用力的影响。运用变温红外技术在293~393K范围内,分别测定了硬脂酸C-H的一维红外光谱、二阶导数红外光谱、四阶导数红外光谱和去卷积红外光谱。结果表明:1在293~333K范围内,一维红外光谱中2 965,2 870cm-1附近的弱吸收谱带分别归属于甲基的不对称伸缩振动模式νas(-CH3)和对称伸缩振动模式νs(-CH3),相应的导数光谱及去卷积红外光谱能提高一维红外谱的分辨率;2在293~333K范围内,硬脂酸脂肪链处于全反式构象,在348~353K范围内,硬脂酸分子脂肪链构象由全反式构象向无序构象转变;3随着测量温度的升高,硬脂酸分子间的作用力不断降低。  相似文献   

9.
运用多重态计算方法研究了在正八面体对称性的晶体场中Co~(2+)离子的2p电子X射线L~(2,3)吸收边光谱,研究了Co~(2+)离子和周围的配位离子之间的正八面体(Oh)晶体场效应和相应的电荷转移效应对于吸收光谱的影响.系统讨论了在多重态计算中起作用的所有物理参数对CoO和CoCl_2的X射线吸收光谱特性的特定影响及其物理机制.将计算得出的光谱数据和同样具有O_h对称性结构Co~(2+)离子的CoO和CoCl_2实验光谱数据进行了对比,在实验光谱数据中发现的特征被确定为来自不同自旋态,并且光谱强度的变化与晶体场的强度相关,揭示了其中包含的电荷转移效应.本文为低对称性复杂系统的多重态计算提供了一个基础的参考标准,可以适用于含有钴元素或其它过渡金属的复杂体系的X射线吸收光谱的理论计算.  相似文献   

10.
运用密度泛函理论的B3LYP方法, 在6-31G(d)基组水平上, 计算了(SiO2)n和(SiO2)nO2H4 (n=3-20)准一维链状纳米线的振动光谱. 结果发现, 在红外和拉曼光谱中振动频率和强度随着二氧化硅纳米线单元个数的奇偶变化, 表现出奇偶振荡现象. 团簇两端极性基团取向的影响, 使不同振动模式的奇偶振荡强弱有所差异, 进一步从极化率说明了羟基对准一维(SiO2)n纳米线奇偶性变化所起的作用.  相似文献   

11.
Reliable assignments of most of the bands of vibrational molecular spectra suffer from ambiguous interaction of atomic displacements. Various experimental methods must be used to ascertain the assignment. By means of dichroic measurements of vibrational bands additional information can be obtained to reach this goal. Thus FT-IR ATR spectra of single crystals of Cd(DEDTC)2 were recorded. If the molecular site with respect to the crystallographic cell is taken into account, the symmetry of certain vibrational modes can be determined.For aC 2h factor group of the monoclinic cell it is possible to distinguish betweenA u andB u symmetry species by the different dichroic ratios of the vibrational bands. This method supports vibrational assignment being verified by force constant refinement calculations.As a result a correlation between molecular site, symmetry and dichroic ratios of vibrational modes of single crystals is presented.  相似文献   

12.
Using high-resolution photoelectron spectroscopy, we have determined the energy dependent vibrational branching ratios for the symmetric stretch [v+ = (100)], bend [v+ = (010)], and antisymmetric stretch [v+ = (001)], as well as several overtones and combination bands in the 4sigmag(-1) photoionization of CO2. Data were acquired over the range from 20-110 eV, and this wide spectral coverage highlighted that alternative vibrational modes exhibit contrasting behavior, even over a range usually considered to be dominated by atomic effects. Alternative vibrational modes exhibit qualitatively distinct energy dependences, and this contrasting mode-specific behavior underscores the point that vibrationally resolved measurements reflect the sensitivity of the electron scattering dynamics to well-defined changes in molecular geometry. In particular, such energy-dependent studies help to elucidate the mechanism(s) responsible for populating the symmetry forbidden vibrational levels [i.e., v+ =( 010), (001), (030), and (110)]. This is the first study in which vibrationally resolved data have been acquired as a function of energy for all of the vibrational modes of a polyatomic system. Theoretical Schwinger variational calculations are used to interpret the experimental data, and they indicate that a 4sigmag-->ksigmau shape resonance is responsible for most of the excursions observed for the vibrational branching ratios. Generally, the energy dependent trends are reproduced well by theory, but a notable exception is the symmetric stretch vibrational branching ratio. The calculated results display a strong peak in the vibrational branching ratio while the experimental data show a pronounced minimum. This suggests an interference mechanism that is not accounted for in the single-channel adiabatic-nuclei calculations. Electronic branching ratios were also measured and compared to the vibrational branching ratios to assess the relative contributions of interchannel (i.e., Herzberg-Teller) versus intrachannel (i.e., photoelectron-mediated) coupling.  相似文献   

13.
The pseudo-Jahn-Teller (PJT) coupling of a nondegenerate state A with a twofold degenerate state E by a degenerate vibrational mode e is studied for a general system with a C(3) main rotational axis. The PJT coupling terms up to sixth order are derived by symmetry considerations for this general (A+E) multiply sign in circle e case. The obtained expression for the 3 x 3 diabatic potential energy matrix is found to be closely related to the expression recently developed for the higher order Jahn-Teller case [A. Viel and W. Eisfeld, J. Chem. Phys. 120, 4603 (2004)]. The dynamical PJT coupling, which can arise for states of appropriate symmetry if one of the vibrational modes induces a change of the nuclear point group between D(3h), C(3v), C(3h), and C(3), is discussed. The effect of the higher order PJT coupling is tested by a two-dimensional model study based on the e bending mode of NH(3)(+). The models are analyzed by fitting the two-dimensional potential energy surfaces. The significance of the higher order terms on the nonadiabatic dynamics is demonstrated by quantum wave packet propagations.  相似文献   

14.
We report a theoretical account on the static and dynamic aspects of the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) interactions in the ground and first excited electronic states of the ethane radical cation. The findings are compared with the experimental photoionization spectrum of ethane. The present theoretical approach is based on a model diabatic Hamiltonian and with the parameters derived from ab initio calculations. The optimized geometry of ethane in its electronic ground state (1A1g) revealed an equilibrium staggered conformation belonging to the D3d symmetry point group. At the vertical configuration, the ethane radical cation belongs to this symmetry point group. The ground and low-lying electronic states of this radical cation are of 2Eg, 2A1g, 2Eu, and 2A2u symmetries. Elementary symmetry selection rule suggests that the degenerate electronic states of the radical cation are prone to the JT distortion when perturbed along the degenerate vibrational modes of eg symmetry. The 2A1g state is estimated to be approximately 0.345 eV above the 2Eg state and approximately 2.405 eV below the 2Eu state at the vertical configuration. The symmetry selection rule also suggests PJT crossings of the 2A1g and the 2Eg electronic states of the radical cation along the vibrational modes of eg symmetry and such crossings appear to be energetically favorable also. The irregular vibrational progressions, with numerous shoulders and small peaks, observed below 12.55 eV in the experimental recording are manifestations of the dynamic (E x e)-JT effect. Our findings revealed that the PJT activity of the degenerate vibrational modes is particularly strong in the 2Eg-2A1g electronic manifold which leads to a broad and diffuse structure of the observed photoelectron band.  相似文献   

15.
The molecule with T_h symmetry is rare. A novel C60-like molecule C48O12 with rare Th symmetry has been studied at the B3LYP/6-31G(d) level of theory. Its structural, electronic, vibrational, NMR, and thermodynamic properties have been calculated at the B3LYP/6-31G(d) level of theory. Vibrational modes have been assigned according to their symmetry. There are 73 independent vibrational modes: 22 IR-active modes with T u symmetry and 37 Raman-active modes with Ag , Eg and Tg symmetry, respectively. The heat of formation has been calculated by using isodesmic reactions, 765.7 kJ mol-1 . According to the heat of formation and the HOMO-LUMO gap, C48O12 with rare Th symmetry is more stable than C60 .  相似文献   

16.
Absolute absorption intensities (oscillator strengths) are calculated for the d-d symmetry-forbidden transition in hexacarbonyl chromium. The vibronic coupling mechanism is taken into account in a way that represents an alternative to the traditional perturbative approach of Herzberg and Teller. In the so-called direct method, the electronic transition moment is directly expanded in a power series of the vibrational normal coordinates of suitable symmetry. In the present case, i.e., d-d ligand field transitions, or more specifically (1)A(1g) --> (1)T(1g) and (1)A(1g) --> (1)T(2g) transitions, the dipole selection rule is broken by vibronic interaction induced by normal modes that transform like T(1u) and T(2u) representations of the O(h) group. An analysis of the relative importance of normal modes in promoting electronic transitions is carried out.  相似文献   

17.
The connection between isobaric fragility and the properties of high-order stationary points of the potential energy surface in different supercooled Lennard-Jones mixtures was investigated. The increase of effective activation energies upon supercooling appears to be driven by the increase of average potential energy barriers measured by the energy dependence of the fraction of unstable modes. Such an increase is sharper, the more fragile the mixture. Correlations between fragility and other properties of high-order stationary points, including the vibrational density of states and the localization features of unstable modes, are also discussed.  相似文献   

18.
Despite intensive studies of the neutral tropyl radical, none of its structure, energetics, and vibrational modes are still clear. This system has puzzled scientists for over a decade since one vibrational mode frequency sharply varies from imaginary number 3000i cm-1 to the real number 6000 cm-1, depending on the calculation methods employed. We find that the origin of this peculiar mode is due to the pseudorotation (omegairot) involved in the interconversion of two nearly isoenergetic Jahn-Teller configurations (elongated structure 2B1 and compressed structure 2A2 with C2v symmetry). Here, we first report that this interconversion is not via D7h or C2v symmetry configuration but via Cs symmetry (i.e., by changing the C2v axis). This interconversion barrier is found negligibly small. Thus, the two conformers are considered to be not two different structures but a dynamically identical structure with partial quantum statistical distributions on the potential energy surface. Owing to the nearly barrierless pseudorotation, the overall structure in a short time scale (less than femtosecond) would be Cs-like between 2A2 and 2B1 configurations with small fluctuation of bond distances. However, the dynamical transitions between the 2B1 and 2A2 configurations via 14 different pseudorotation pathways would make the tropyl radical have the effective D7h structure in either a nonshort time scale (greater than femtosecond) or at nonlow temperatures, which explains the high temperature electron spin resonance experiments.  相似文献   

19.
An atomic force microscopy (AFM) and confocal Raman microscopy study of the interfacial electron transfer of a dye-sensitization system, i.e., alizarin adsorbed upon TiO(2) nanoparticles, has revealed the distribution of the mode-specific vibrational reorganization energies encompassing different local sites ( approximately 250-nm spatial resolution). Our experimental results suggest inhomogeneous vibrational reorganization energy barriers and different Franck-Condon coupling factors of the interfacial electron transfer. The total vibrational reorganization energy was inhomogeneous from site to site; specifically, mode-specific analyses indicated that energy distributions were inhomogeneous for bridging normal modes and less inhomogeneous or homogeneous for nonbridging normal modes, especially for modes far away from the alizarin-TiO(2) coupling hydroxyl modes. The results demonstrate a significant step forward in characterizing site-specific inhomogeneous interfacial charge-transfer dynamics.  相似文献   

20.
In this paper, we theoretically investigate the nuclear signatures effects, i.e., the initial vibrational state and the isotopic effects on the generations of the molecular high-order harmonics and the attosecond pulses when the model H(2)(+)/D(2)(+) ions are exposed to a 5 fs/800 nm chirp pulse. The numerical solution of the time-dependent Schr?dinger equation for these vibrating molecule ions shows that the intensities of the harmonic spectra are reinforced with the enhancement of the initial vibrational state. Moreover, through the investigation of the isotopic effect, we find that more intense harmonics are generated in the lighter nucleus. Furthermore, by optimizing the chirp pulse under the optimal initial vibrational state, an intense ultrabroad supercontinuum with a 325 eV bandwidth can be obtained. By properly superposing the harmonic spectrum, an attosecond pulse as short as 57 as (16 as) is generated without (with) phase compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号