首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2,并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响.采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌.使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能.结果表明,pH为7.0时,合成的材料颗粒更小、分布最均匀,材料具有良好的层状特征,且材料中锂镍的混排程度最小.电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能,在0.1C的倍率下,材料的首次放电比容量达到了185 mAh.g-1,在循环20周后,放电比容量仍然保持在160 mAh.g-1.X射线光电子能谱(XPS)测试结果表明,pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价,Mn为+4价.  相似文献   

2.
使用草酸盐共沉淀法合成了5 V正极材料LiNi0.5Mn1.5O4,研究了不同温度下合成的材料结构形貌与电化学性能之间的关系。结果表明,在900℃下合成的样品电化学性能最好,可逆放电容量达到133.0 mAh?g-1,经30周循环后,容量仍然保持在132.2 mAh?g-1,容量保持率高达99.4%。使用恒电位间歇滴定法(PITT)测定了锂离子在LiNi0.5Mn1.5O4材料中的扩散系数。结果表明,在LiNi0.5Mn1.5O4材料放电过程中,在不同电位嵌锂量不同,发生反应的氧化还原电对也不同,锂离子的扩散系数在不同的电位下也会有差别,扩散系数在10e-10 cm2?s-1~10e-11 cm2?s-1范围内变  相似文献   

3.
采用氢氧化物共沉淀-高温煅烧方法成功制备出具有较低阳离子混排的纳米片LiNi1/3Co1/3Mn1/3O2(LNCM)正极材料。这种纳米片有利于锂离子的扩散。所以纳米片LNCM正极材料表现出了比商业化LNCM材料更加优异的倍率性能:在3.0~4.6 V下,10 C首次放电容量可达85.5 mAh·g-1,能量密度可达310.2 Wh·kg-1。  相似文献   

4.
锰源对燃烧法制备5V级正极材料LiNi0.5Mn1.5O4的影响   总被引:1,自引:1,他引:0  
以硝酸锰和醋酸锰,采用蔗糖燃烧法制备锂离子电池正极材料LiNi0.5Mn1.5O4通过XRD、SEM、粒径分布测试、循环伏安、恒流充放电测试以及交流阻抗等方法,研究了醋酸锰和硝酸锰对产物的结构、形貌、粒径及电化学性能的影响。XRD测试结果表明样品的结构都为立方尖晶石型,属于Fd3m空间群。不同的锰源对材料的粒径及粒径分布有很大的影响。以醋酸锰为原料制得的材料的粒径较小并且分布更均匀,有利于锂离子的脱出和嵌入从而提高电化学性能。以醋酸锰为锰源制得的LiNi0.5Mn1.5O4在3.6~5.2 V的充放电电压范围内的电化学性能更好,1C(1C=140.0 mA.g-1)倍率的首次放电容量为144.5 mAh.g-1,循环100周后容量保持率为96%,在3C,5C,10C以及20C的放电容量分别为136.3,132.0,124.7以及96.6 mAh.g-1。  相似文献   

5.
目前,工业产品的三元正极材料LiNi0.5Co0.2Mn0.3O2通常使用间接共沉淀和高温固相烧结相结合的方法.共沉淀制得的氢氧化镍钴锰前驱体,其形貌和粒径分布等直接影响着三元材料LiNi0.5Co0.2Mn0.3O2的性能.使用X射线衍射(XRD)、扫描电镜(SEM)表征和观察材料晶体结构和表面形貌,并测试粒径分布、振实密度和电化学性能,考察三种前驱体对制得的三元材料的影响.研究结果表明,前驱体的粒径分布直接影响材料的物理性能,表面有大量微孔而又致密的球形是较理想的前驱体形貌;焙烧后可得到结晶度高的材料,0.2C全电池放电比容量达到156.4 mAh·g-1,循环寿命优异,300周期循环其容量基本不衰减,500周期循环后容量保持率高达92%.  相似文献   

6.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2, 并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响. 采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌. 使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能. 结果表明, pH为7.0时, 合成的材料颗粒更小、分布最均匀, 材料具有良好的层状特征, 且材料中锂镍的混排程度最小. 电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能, 在0.1C的倍率下, 材料的首次放电比容量达到了185 mAh·g-1, 在循环20周后, 放电比容量仍然保持在160 mAh·g-1. X射线光电子能谱(XPS)测试结果表明, pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价, Mn为+4价.  相似文献   

7.
以LiAc,MnAc2和LaCl3为原料,通过高温固相两段烧结合成法制备了4种LiLaxMn2-xO4(Fx,x=0,0.02,0.04,0.06),其结构和形貌经XRD和SEM表征。结果表明,LiLa0.02Mn1.98O4(即F0.02)为纯尖晶石结构,表面形貌为球形。采用活性炭为导电剂制备了Fx的锂离子电池正极材料(Ex),并用循环伏安法研究了Ex的电化学性能。结果表明,E0.02在0.1 C倍率充放电时的首次放电容量为75 mAh·g-1;0.5 C倍率循环充放电时,放电比容量为79 mAh·g-1;经过20次0.2 C倍率循环充放电时,容量保持在80 mAh·g-1。  相似文献   

8.
通过共沉淀与同相反应法制备层状的 LiNi0.45 Mn0.45Co0.10O2,并利用X射线衍射(XRD)和电子扫描显微镜(SEM)测定材料的结构和形貌.在2.5~4.5 V范围内,以0.1 C(28 mA·g-1)放电,LiNi0.45Mn0.45Co0.10O2正极材料的起始放电容量达到167.2 mAh·g-1,但循环性能较差.当采用 A1F3包覆后,材料的循环性能得到明显改善.利用电化学阻抗谱(EIS)技术探索AIF3包覆对正极材料的电化学性能改善机理,实验结果表明:AIF3包覆层能够阻止电解液对正极材料的溶解和侵蚀,稳定其层状结构,同时降低了电极界面阻抗.冈此A1F3包覆技术足一种改善LiNi0.45Mn0.45Co0.10O2材料电化学件能的有效方法和工具.  相似文献   

9.
采用聚乙烯吡咯烷酮(PVP)作为络合剂和燃料以凝胶燃烧法制备了具有优异高倍率放电性能的亚微米LiNi0.5Mn1.5O4材料.用热重/差热分析(TG/DTA)研究了凝胶的燃烧过程,用X射线衍射(XRD)、扫描电镜(SEM)和循环伏安(CV)研究了LiNi0.5Mn1.5O4材料的结构和形貌.结果表明材料为结晶良好的纯尖晶石相结构,由5μm左右的二次颗粒组成,颗粒大小分布均匀,一次晶粒发育良好,粒径在500nm左右.充放电测试表明材料的倍率性能和循环性能十分优异.在3.5至4.9V进行充放电测试,0.5C、1C、4C、8C和10C倍率下放电容量分别为131.9、127.6、123.4、118.4和113.7mAh·g-1.在10C大倍率放电条件下循环100、500和1000次的容量保持率分别为91.4%、80.9%和73.5%.  相似文献   

10.
富锂层状氧化物作为锂离子电池正极材料具有高比容量优势.采用草酸盐共沉淀法制备Li(Li0.22Ni0.17Mn0.61)O2,并用YF3包覆电极.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)表征材料结构、观察材料形貌.结果表明,材料颗粒尺寸在100~200 nm范围,YF3包覆不会改变材料结构和形貌.电化学恒流充放电测试表明,YF3包覆Li(Li0.22Ni0.17Mn0.61)O2电极的比容量,尤其倍率比容量明显提高.60 mA·g-1电流密度下包覆电极材料30周循环后其比容量保持在220 mAh·g-1以上,1500 mA·g-1电流密度下其比容量仍可达150 mAh·g-1.电化学阻抗谱(EIS)测试结果表明,YF3包覆电极电荷转移电阻和扩散阻抗均明显降低,有利于电化学性能改善.  相似文献   

11.
5 V正极材料LiNi0.5Mn1.5O4的自蔓延燃烧合成及性能   总被引:2,自引:1,他引:1  
通过自蔓延燃烧方法合成了性能优良的高电位5V锂离子电池正极材料LiNi0.5Mn1.5O4,利用傅立叶红外光谱(FTIR)、热分析(DSC/TG)、X射线衍射(XRD)、透射电镜(TEM)等方法对前驱物及样品的结构和物化性质等进行了分析和表征,考察了材料的电化学性能。结果表明,所制备样品具有单一的尖晶石相结构,具有4.7V充放电平台;在3.5V到5.2V之间进行充放电性能测试具有131mAh·g-1以上的可逆容量;在2C倍率下循环100次后的容量保持率为96%以上。  相似文献   

12.
Spinel LiNi0.5Mn1.5O4 cathode material is a promising candidate for next-generation rechargeable lithium-ion batteries. In this work, BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared via a wet chemical method and the structure, morphology, and electrochemical performance of the materials were studied. The coating of BiFeO3 has no significant impact on the crystal structure of LiNi0.5Mn1.5O4. All BiFeO3-coated LiNi0.5Mn1.5O4 materials exhibit cubic spinel structure with space group of Fd3m. Thin BiFeO3 layers were successfully coated on the surface of LiNi0.5Mn1.5O4 particles. The coating of 1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 exhibits a considerable enhancement in specific capacity, cyclic stability, and rate performance. The initial discharge capacity of 118.5 mAh g?1 is obtained for 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 with very high capacity retention of 89.11% at 0.1 C after 100 cycles. Meanwhile, 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode shows excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8 mAh g?1 at 1, 2, 5, and 10 C, respectively, which is higher than that of LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g?1, respectively). The surface coating of BiFeO3 effectively decreases charge transfer resistance and inhibits side reactions between active materials and electrolyte and thus induces the improved electrochemical performance of LiNi0.5Mn1.5O4 materials.  相似文献   

13.
基于LiNi0.5Mn1.5O4的5 V电池尚未实现实际应用,解决这一问题的关键在于电解液调控和电极界面优化。我们系统性研究了三(三甲基硅烷)硼酸酯(TMSB)和三(三甲基硅烷)亚磷酸酯(TMSPi)作为常规碳酸乙烯酯(EC)-LiPF6基电解液添加剂在LiNi0.5Mn1.5O4电池体系中的应用。结合理论计算、物理化学表征以及电化学手段分析了三(三甲基硅烷)类添加剂在高压电解液中的作用机制。研究发现,TMSB和TMSPi均可以通过优化电极/电解液界面来提高LiNi0.5Mn1.5O4循环稳定性和库仑效率。TMSB中缺电子B可与阴离子相互作用,稳定PF6-,抑制LiNi0.5Mn1.5O4正极阻抗的持续增加。TMSPi具有更高的最高占据分子轨道(HOMO)能级,可在更低电位下钝化高压正极,提高LiNi0.5Mn1.5O4放电电压平台和放电容量。此外,TMSPi还可通过亲核反应参与石墨界面组分优化,改善负极循环性能。石墨LiNi0.5Mn1.5O4软包电池在含1% TMSPi电解液中1C循环100次后的容量保持率为88.9%,优于基础电解液(60.5%)和含1% TMSB的电解液(77.4%)。  相似文献   

14.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能。XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数。CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率。充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量。质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化。  相似文献   

15.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(简称LNMCO),并使用Zr (CH3COO)4进行ZrO2的包覆改性。TEM测试结果显示纳米级的ZrO2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 mA·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 mAh·g-1,而原样则为75.1%,224.1 mAh·g-1,循环100圈之后,1.5% ZrO2包覆样品的放电比容量为248.3 mAh·g-1,容量保持率为88.9%,高于原样的195.9 mAh·g-1和87.4%。  相似文献   

16.
The effect of different membranes and aluminum current collectors on the initial coulombic efficiency of LiNi0.5Mn1.5O4/Li was investigated, and the cycling performance at different rates and temperatures and the storage performance at 60 °C for a week are discussed for LiNi0.5Mn1.5O4/Li. The results show that the lower initial coulombic efficiency is associated with the lower decomposition voltage of the commercial membrane and electrolyte, and the instability of aluminum current collector under the higher voltage. In addition, both versions of LiNi0.5Mn1.5O4 can deliver about 115 mA?h g?1 of initial discharge capacity at 1 C at 25 °C and 60 °C; however, it retains only 61.57 % of its initial capacity after the 130th cycles at 60 °C, which is much lower than the 94.46 % rate observed for LiNi0.5Mn1.5O4 at 25 °C, and the cycling performance of the material at 1 C is better than that at 0.5 C. Meanwhile, the initial discharge capacity at 0.1 C after storing at 60 °C is 119.3 mA?h g?1, which is only a little lower than 121.5 mA?h g?1 recorded before storing; moreover, the spinel structure and surface state of LiNi0.5Mn1.5O4 after storing at 60 °C has not been changed basically. These results indicate that the electrochemical stability of electrolyte is also related to the temperature. The serious capacity fading of LiNi0.5Mn1.5O4 at 60 °C is attributed to the severe oxidation decomposition and the thermal decomposition in the range of cut-off voltage of the materials, and then the decomposition products interact with active materials to form a solid interface phase, leading to the larger electrode polarization and irreversible capacity loss. Meanwhile, the worse cycling performance at 0.5 C than that at 1 C is attributed to the longer interaction time between the electrolyte and the active materials. However, the storage performance of LiNi0.5Mn1.5O4 corresponds to the thermal stability of electrolyte to a certain extent.  相似文献   

17.
In this paper, the LiNi0.5Mn1.5O4 cathode materials of lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining process. The use of a spray-drying process to form particles, followed by a calcination treatment at the optimized temperature of 750 °C to produce spherical LiNi0.5Mn1.5O4 particles with a cubic crystal structure, a specific surface area of 60.1 m2 g?1, a tap density of 1.15 g mL?1, and a specific capacity of 132.9 mAh g?1 at 0.1 C. The carbon nanofragment (CNF) additives, introduced into the spheres during the co-precipitation spray-drying period, greatly enhance the rate performance and cycling stability of LiNi0.5Mn1.5O4. The sample with 1.0 wt.% CNF calcined at 750 °C exhibits a maximum capacity of 131.7 mAh g?1 at 0.5 C and a capacity retention of 98.9% after 100 cycles. In addition, compared to the LiNi0.5Mn1.5O4 material without CNF, the LiNi0.5Mn1.5O4 with CNF demonstrates a high-rate capacity retention that increases from 69.1% to 95.2% after 100 cycles at 10 C, indicating an excellent rate capability. The usage of CNF and the synthetic method provide a promising choice for the synthesis of a stabilized LiNi0.5Mn1.5O4 cathode material.
Graphical Abstract Micro/nanostructured LiNi0.5Mn0.5O4 cathode materials with enhanced electrochemical performances for high voltage lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining routine and using carbon nanofragments (CNFs) as additive.
  相似文献   

18.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能.XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数.CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率.充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量.质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号