首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hop is a well-known and already frequently used estrogenic phytotherapeutic, containing the interesting prenylflavonoids, xanthohumol (XN), isoxanthohumol (IXN), 8- and 6-prenylnaringenin (8-PN and 6-PN). Since the use of secondary standards can form a solution whenever the determination is required of certain components, not commercially available or too expensive, it was decided to develop an accessible HPLC-DAD method for the determination of these prenylflavonoids. The amounts were determined in hop extract and capsules, using quercetin and naringenin as secondary standards. After optimization of the sample preparation and HPLC conditions, the analysis was validated according to the ICH guidelines. The response function of XN, 8-PN, quercetin and naringenin showed a linear relationship. For the determination of XN, a calibration line of at least three concentrations of quercetin has to be constructed. The correction factors for XN (quercetin) and for 8-PN (naringenin) were validated and determined to be 0.583 for XN, and 1.296 for IXN, 8-PN and 6-PN. The intermediate precision was investigated and it could be concluded that the standard deviation of the method was equal considering time and concentration (RSD of 2.5-5%). By means of a recovery experiment, it was proven that the method is accurate (recoveries of 96.1-100.1%). Additionally, by analysing preparations containing hop extracts on the Belgian market, it was shown that the method is suitable for its use, namely the determination of XN, IXN, 8-PN and 6-PN in hop extract and capsules, using quercetin and naringenin as secondary standards.  相似文献   

2.
Xanthohumol (XN) is the major prenylated flavonoid in hop plants and as such a constituent of beer. Pharmacological studies have shown that XN possesses marked antioxidant and antiproliferative effects. In order to study the resorption and metabolism of this compound, reversed-phase high-performance liquid chromatography is used for the determination of XN in rat plasma, urine, and feces. In session one, rats receive either oral or intravenous (iv) administration (20 mg/kg body weight) of XN. In session two, rats receive oral administration of 50, 100, 200, 400, and 500 mg/kg body weight XN for bioavailability studies at various dose levels. Plasma, urine, and feces are collected at varying time points and assayed for their XN content. Plasma levels of XN fell rapidly within 60 min after iv administration; no XN is detected in plasma after oral administration in either session. XN and its metabolites are excreted mainly in feces within 24 h of administration. The method is a reliable tool for performing studies of XN in different biological material.  相似文献   

3.
Aqueous and nonaqueous capillary electrophoresis (NACE) were investigated for separation of venlafaxine, a new second-generation antidepressant, and its three phase I metabolites. Working at basic pH, around the venlafaxine pKa value, was effective in resolving the investigated drugs, but created considerable peak tailing. To overcome electrostatic interactions between analytes and silanol groups, investigations were also carried out at acidic pH. However, despite the addition of up to 50% v/v of organic solvents (e.g., methanol or acetonitrile), complete separation of the studied compounds was not possible. NACE was found to be an appropriate alternative to resolve venlafaxine and its metabolites simultaneously. Using a conventional capillary (fused-silica, 64.5 cm length, 50 microm inner diameter), and a methanol-acetonitrile mixture (20/80 v/v) containing 25 mM ammonium formate and 1 M formic acid, complete resolution of these closely related compounds was performed in less than 3.5 min. Selectivity, efficiency and separation time were greatly affected by the organic solvent composition. As the electric current generated in nonaqueous medium was very low, the electric field was further increased by reducing the capillary length. This allowed a baseline resolution of venlafaxine and its three metabolities in 0.7 min. Selectivity was compared in aqueous and nonaqueous media in relation to the acid-base properties of the analytes as well as to the solvation degree. Finally, the method successfully coupled on-line to mass spectrometry with electrospray ionization interface allowed significant sensitivity enhancement.  相似文献   

4.
The feasibility of using C1-C5 alcohols as electrolyte solutions in nonaqueous capillary zone electrophoresis was investigated. The separation of basic narcotic analgesics and acidic diuretics was modified by changing the alcohol in an electrolyte solution containing alcohol-acetonitrile-acetic acid (50:49:1, v/v) and 20 mM ammonium acetate while other experimental conditions were kept constant. The alcohols studied were methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol. The results indicate that even longer-chain alcohols can be used in nonaqueous capillary zone electrophoresis and, because of the lower currents they allow, they are especially advantageous in wider capillaries. Basic analytes were separated in 200 microm and 320 microm ID capillaries with 1-butanol-acetonitrile-acetic acid (50:49:1, v/v) containing 20 mM ammonium acetate as electrolyte solution. Problems related to the use of wide-bore capillaries are discussed.  相似文献   

5.
Increasing the sample load in nonaqueous capillary electrophoresis through the use of wide-bore capillaries is a good way to scale up analytical separations to semipreparative level. However, obtaining high efficiency requires the use of special instrumentation to eliminate siphoning. When wide-bore capillaries are employed, relatively large solvent volumes are transported from inlet to outlet vial, and due to the difference in liquid levels a siphoning flow from outlet to inlet is established. Siphoning induces a deviation from the plug-like flow profile and adversely affects the separation efficiency. In this study the use of wide-bore capillaries in nonaqueous capillary electrophoresis was examined with compensation for siphoning by lifting of the inlet vial. The inlet vial is raised at a speed appropriate for maintaining equal levels of liquid in the inlet and outlet vials. The optimal lift rate was determined empirically from a series of runs in which the lift rate was varied. As well, a simple theoretical model was devised for the calculation of lift rates. The model was successfully applied for the 200 microm and 320 microm ID capillaries but for the 530 microm ID capillary the predicted optimal lift rate was too low. Evidently this was because the theory was unable to account for the effect of siphoning on the migration times. Three model compounds, bumetanide, furosemide and ethacrynic acid, were separated using an acetonitrile-ethanol mixture (50:50, v/v) with potassium acetate (1 mM) or ammonium acetate (5 mM) as electrolyte. Good separation of bumetadine and ethacrynic acid was obtained even with a 530 microm ID capillary when the lift rate was carefully optimized. Without elimination of siphoning the peaks would not have been detectable. The viscosities and electrical conductivities of the electrolyte solution measured at different temperatures showed that viscosity as well as conductivity decreased with increasing temperature. The temperature dependence of the conductivity was used to estimate the temperature inside the CE capillary.  相似文献   

6.
Gao F  Zhang Z  Fu X  Li W  Wang T  Liu H 《Electrophoresis》2007,28(9):1418-1425
A hyphenated method of nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry (NACE-ESI-MS) is described for the simultaneous analysis of phospholipids. The best results were obtained with a mixed solution of methanol/ACN (40:60 v/v) containing 20 mM ammonium acetate and 0.5% acetic acid, under the applied voltage of 30 kV and capillary temperature of 25 degrees C. ESI-MS measurements were performed in the negative mode with methanol/ACN (40:60 v/v) containing 50 mM ammonium acetate as sheath liquid at a flow rate of 2 microL/min. Different phospholipid classes have been successfully separated within 16 min, and the molecular species of every single class have been identified by using MS(2) or MS(3), which generates characteristic fragments through CID. The developed method has been applied to analyze the phospholipids extracted from rat peritoneal surface and the molecular species of phospholipid classes are presented.  相似文献   

7.
采用非水毛细管电泳方法对2’-AMP、3’-AMP和5’-AMP 3种单磷酸腺苷进行分离研究,考察了电泳溶液pH*值、非水介质、缓冲溶液对分离的影响。以含50%乙腈的Tris-H3BO3体系为缓冲溶液,在pH*10.0、压差进样(50 mbar,5 s)、柱温25℃、25 kV恒压下进行分离,在波长260 nm处负极检测,各组分可达到基线分离。在质量浓度为1~100 mg/L范围内,3种单磷酸腺苷的线性关系良好,平均回收率为88%~106%,RSD小于4%。该方法应用于核苷样品的测定,结果满意。  相似文献   

8.
A method has been developed for the separation and determination of phospholipids by nonaqueous capillary electrophoresis in a separation medium of acetonitrile-2-proponol (3:2, v/v), 0.3% acetic acid and 60 mM ammonium acetate. To optimize the separation conditions, the composition of separation medium including alcohols, acetic acid, n-hexane and ammonium acetate was studied. The solvation interaction and ion-dipole interaction were also investigated. The contents of phospholipids in soybean, sunflower, peanut, apricot kernel, filbert and walnut were determined by the recommended method. The results obtained by the nonaqueous capillary electrophoreses were in good agreement with those determined by micellar electrokinetic chromatography.  相似文献   

9.
This study deals with the nonaqueous capillary electrophoretic separation of dextromethorphan and its metabolites using a methanolic background electrolyte. The optimization of separation conditions was performed in terms of the resolution of dextromethorphan and dextrorphan and the effect of separation temperature, voltage, and the characteristics of the background electrolyte were studied. Complete separation of all analytes was achieved in 40 mM ammonium acetate dissolved in methanol. Hydrodynamic injection was performed at 3 kPa for 4 s. The separation voltage was 20 kV accompanied by a low electric current. The ultraviolet detection was performed at 214 nm, the temperature of the capillary was 25°C. These conditions enabled the separation of four analytes plus the internal standard within 9 min. Further, the developed method was validated in terms of linearity, sensitivity, and repeatability. Rat liver perfusate samples were subjected to the nonaqueous capillary electrophoretic method to illustrate its applicability.  相似文献   

10.
The nonaqueous capillary electrophoresis mode which includes a preconcentration step based on a transient pseudo-isotachophoresis to the simultaneous separation of seven glucoconjugated and hydroxylated porphyrins and chlorins, exhibiting very close structures, is reported. A high methanol content, of the buffer solution, was necessary in order to prevent self-assembly of the compounds and to enhance their solubility during separation. With the addition of 66% (v/v) methanol and 1% (w/v) NaCl in the aqueous sample solution, large volumes could be injected (44% capillary volume) without a loss in resolution. Sensitivity of detection was therefore improved by a 100-fold factor with regard to the method employing normal injection (2% capillary volume). Optimum electrophoretic conditions, in terms of sensitivity and performance, were obtained by using 20 mM phosphoric acid buffer, pH 2.2 and 50% methanol. The method was validated and applied to qualitative analysis of glucoconjugates in serum samples.  相似文献   

11.
The viability of nonaqueous capillary electrophoresis (NACE) was investigated for determination of gleevec and its main metabolite in human urine using a fused-silica capillary. Baseline separation of the studied solutes was obtained using a nonaqueous solution composed of 12 mM ammonium acetate and 87.6 mM acetic acid in methanol-acetonitrile (ACN) (80:20, v:v) providing analysis time shorter than 3 min. Different aspects including stability of the solutions, linearity, accuracy and precision were studied in order to validate the method in the urine matrix. Detection limits of 24 microg L(-1) for gleevec and its metabolite were obtained. A robustness test of the method was carried out using the Plackett-Burman fractional factorial model with a matrix of 15 experiments. The developed method is simple, rapid and sensitive and has been used to determine gleveec and its metabolite at clinically relevant levels in human urine. Before NACE determination, a solid-phase extraction (SPE) procedure with a C18 cartridge was necessary. Real determination of these analytes in two patient urines were done.  相似文献   

12.
A rapid and simple method was demonstrated for the analysis of atropine, anisodamine, and scopolamine by nonaqueous capillary electrophoresis (NACE) coupled with electrochemiluminescence (ECL) and electrochemistry (EC) dual detection. The mixture of acetonitrile (ACN) and 2-propanol containing 1 M acetic acid (HAc), 20 mM sodium acetate (NaAc), and 2.5 mM tetrabutylammonium perchlorate (TBAP) was used as the electrophoretic buffer. Although a short capillary of 18 cm was used, the decoupler was not needed and the separation efficiency was good. The linear ranges of atropine, anisodamine, and scopolamine were 0.5–50, 5–2000, and 50–2000 μM, respectively. For six replicate measurements of 100 μM scopolamine, 15 μM atropine, and 200 μM anisodamine, the RSDs of ECL intensity, EC current, and migration time were less than 3.6%, 4.5%, and 0.3%, respectively. In addition, because the organic buffer was used, the working electrode (Pt) was not easily fouled and did not need reactivation. The method was also applied for the determination of these three alkaloids in Flos daturae extract.  相似文献   

13.
Zhu HD  Lü WJ  Li HH  Ma YH  Hu SQ  Chen HL  Chen XG 《Journal of chromatography. A》2011,1218(34):5867-5871
This paper for the first time describes the development of micelle to solvent stacking (MSS) to nonaqueous capillary electrophoresis (NACE). In this proposed MSS-NACE, sodium dodecyl sulfate (SDS) micelles transport, release, and focus analytes from the sample solution to the running buffer using methanol as their solvent. After the focusing step, the focused analytes were separated via NACE. The focusing mechanism and influencing factors were discussed using berberine (BBR) and jatrorrhizine (JTZ) as model compounds. And the optimum condition was obtained as following: 50 mM ammonium acetate, 6% (v/v) acetic acid and 10 mM SDS in redistilled water as sample matrix, 50 mM ammonium acetate and 6% (v/v) acetic acid in pure methanol as the running buffer, -20 kV focusing voltage with 30 min focusing time. Under these conditions, this method afforded limits of detection (S/N=3) of 0.002 μg/mL and 0.003 μg/mL for BBR and JTZ, respectively. In contrast to conventional NACE, the concentration sensitivity was improved 128-153-fold.  相似文献   

14.
In this study, nonaqueous capillary electrophoresis (NACE) was used to separate three open-cage fullerenes. Trifluoroacetic acid (TFA) was used as the nonaqueous background electrolyte to change the analytes’ mobilities. The selectivity and separation efficiency were critically affected by the nature of the buffer system, the choice of organic solvent, and the concentrations of TFA and sodium acetate (NaOAc) in the background electrolyte. The optimized separation occurred using 200 mM TFA/20 mM NaOAc in MeOH/acetonitrile (10:90, v/v), providing highly efficient baseline separation of the open-cage fullerenes within 5 min. The migration time repeatability for the three analytes was less than 1% (relative standard deviation). Thus, NACE is a rapid, useful alternative to high-performance liquid chromatography for the separation of open-cage fullerenes.  相似文献   

15.
Zhou L  Wang W  Wang S  Hui Y  Luo Z  Hu Z 《Analytica chimica acta》2008,611(2):212-219
A novel method based on separation by nonaqueous capillary electrophoresis (NACE) combined with laser-induced fluorescence (LIF) detection was developed and compared with classic aqueous modes of electrophoresis in terms of resolution of solutes of interest and sensitivity of the fluorescence detection. Catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) were chosen as test analytes for their subtle fluorescence properties. In aqueous systems, capillary zone electrophoresis (CZE) was not suitable for the analysis of test analytes due to complete fluorescence quenching of NBD-labeled catecholamines in neat aqueous buffer. The addition of micelles or microemulsion droplets into aqueous running buffer can dramatically improve the fluorescence response, and the enhancement seems to be comparable for micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC). As another alternative, NACE separation was advantageous when performing the analysis under the optimum separation condition of 20 mM sodium tetraborate, 20 mM sodium dodecyl sulfate (SDS), 0.1% (v/v) glacial acetic acid, 20% (v/v) acetonitrile (ACN) in methanol medium after derivatization in ACN/dimethyl sulfoxide (DMSO) (3:2, v/v) mixed aprotic solvents containing 20 mM ammonium acetate. Compared with derivatization and separation in aqueous media, NACE-LIF procedure was proved to be superior, providing high sensitivity and short migration time. Under respective optimum conditions, the NACE procedure offered the best fluorescence response with 5-24 folds enhancement for catecholamines compared to aqueous procedures. In addition, the mechanisms of derivatization and separation in nonaqueous media were elucidated in detail.  相似文献   

16.
An easy, rapid method for simultaneous determination of tetrandrine (TET), fangchinoline (FAN), sinomenine (SIN) and tetrahydropalmatine (TEP) in Chinese herbs was developed by nonaqueous capillary electrophoresis without pretreatment for the first time. Optimum separation was achieved with a fused-silica capillary column ( i.d.) and a running buffer containing 50 mM ammonium acetate, 1.0% acetic acid and 20% acetonitrile in methanol medium. The applied voltage was 20.0 kV. The analytes were detected by UV at 214 nm. The effects of concentration of ammonium acetate, acetic acid and organic modifier on electrophoretic behavior of the analytes were studied. Regression equations revealed linear relationships (correlation coefficients: 0.9991-0.9999) between the peak area of each analyte and the concentration. The levels of analytes in Stephania tetrandra S. Moore, Rhizoma corydalis and Sinomenium acutum Rehd. et. Wils were easily determined with recoveries ranging from 96 to 107%.  相似文献   

17.
Flores JR  Nevado JJ  Salcedo AM  Díaz MP 《Talanta》2005,65(1):155-162
The viability of nonaqueous capillary electrophoresis (NACE) was investigated for the simultaneous determination of tamoxifen, imipramine and their main metabolites (4-hydroxytamoxifen and desipramine, respectively). Baseline separation of the studied solutes was obtained on a 57 cm × 75 μm capillary using a nonaqueous solution composed of 17 mM ammonium acetate and 1.25% acetic acid in 80:20 (v:v) methanol-acetonitrile, temperature and voltage 22 °C and 15 kV, respectively, and hydrodynamic injection. Paroxetine was used as internal standard. Different aspects including linearity, accuracy, ruggedness and precision was studied. Detection limits between 9.0 and 15.0 μg L−1 were obtained for all the studied compounds. The developed method is simple, rapid and sensitive and has been used to determine tamoxifen, imipramine and their metabolites at clinically relevant levels in human urine. Before NACE determination, a solid phase extraction (SPE) procedure with a C18 cartridge was necessary. Real determination of these analytes in three females urines were done.  相似文献   

18.
The separation of linear alkylbenzene sulfonates (LAS) by nonaqueous capillary electrophoresis (NACE) using negative polarity, and a buffer containing acetic acid and an alkylamine in nonaqueous ethanol, has been investigated. Several primary, secondary, and tertiary alkylamines with alkyl chains of different length were compared. The solutes travelled against the electroosmotic flow (EOF), and at the same time were braked by association with the alkylamine molecules or with the alkylammonium ions. The best resolution between adjacent LAS homologues (R approximately 2.1), partial isomer resolution in two peaks, and at the same time an excellent repeatability, was obtained with a small dipentylamine excess over the acetic acid. When the buffer concentration increased, resolution between the homologues increased slightly (R approximately 2.4), and a different isomer group was partially separated. A background electrolyte (BGE) containing 10 mM acetic acid and 20 mM dipentylamine to separate and quantify the homologues within 25 min is recommended. The isomer peak profile with up to three peaks can be estimated using this buffer and another one with 80 mM acetic acid and 90 mM dipentylamine. The former BGE was used to determine LAS in liquid and powder laundry detergents. The detection limit for the determination of total LAS in these products was 2.5 microg mL(-1), and the peak area and migration time interday repeatabilities were below 4.3 and 2.8%, respectively.  相似文献   

19.
Peng ZL  Qu F  Song G  Lin JM 《Electrophoresis》2005,26(17):3333-3340
A simple and rapid nonaqueous capillary electrophoresis method for simultaneous separation of four kinds of mercury species, namely inorganic mercury, methylmercury, ethylmercury, and phenylmercury, is reported. The effective mobilities of organomercury in aqueous and nonaqueous electrolytes were compared. Imidazole was confirmed not only as a co-ion for the separation but also as an online complexing reagent for mercury species. The optimum conditions for separation were achieved by using methanol solvent containing 0.15 M acetic acid and 15 mM imidazole as electrolyte. The sensitive detection of mercury species was accomplished at 191 nm.  相似文献   

20.
This paper reports the use of an anionic cyclodextrin, heptakis(2,3-di-O-methyl-6-O-sulfato)-β-cyclodextrin (HDMS-β-CD), for chiral separations of pharmaceutical enantiomers by nonaqueous capillary electrophoresis (NACE). Enantiomer resolution was affected mainly by HDMS-β-CD concentration and the acidity of the background electrolyte (BGE). The effects of capillary length and applied voltage on enantiomer resolution were also investigated. Results showed that in a methanol solution of 20 mM phosphoric acid, 10 mM sodium hydroxide, and 10 mM HDMS-β-CD, seven anticholinergic drugs were separated to baseline but no chiral separation was obtained for three other similar drugs. NACE is suitable for routine, rapid separation of the enantiomers of pharmaceutical compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号