首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

2.
This paper reports the assessment of the total mercury (T-Hg) and methylmercury (MeHg) contamination of mussel samples collected by two sampling campaigns from along the coastline of Sardinia (Italy). T-Hg has been determined by a direct mercury analyser (DMA) whereas MeHg has been determined by gas chromatography-mass spectrometry (GC-MS) after acid extraction, and employs a novel NaBPh4 derivatization method. The evaluation of the quality of measurements was carried out by analysing candidate certified reference material (CRM) BCR 710, for MeHg and T-Hg, and CRM IAEA-350 for T-Hg. In the analysed samples, the T-Hg concentrations range from 35 to 115 μg kg−1 and from 40 to 830 μg kg−1, for the two sampling campaigns, respectively, whereas the MeHg concentrations range from l5 to 51 μg kg−1 and from 17 to 116 μg kg−1. Consequently, the MeHg/T-Hg ratios range from 0.33 to 0.91 and from 0.14 to 0.98, respectively. Despite the increasing trend of Hg concentration from the first to the second sampling campaign, the T-Hg concentration of all the samples was much below the 0.5 μg g−1 WHO limit, and the MeHg values ranged between 2.2 and 17.2 μg kg−1, not exceeding the 43.5 μg kg−1 tolerable daily residue level calculated for Italy.  相似文献   

3.
In this work we have evaluated the performance of two sample preparation methodologies for the large-scale multiresidue analysis of pesticides in olives using liquid chromatography–electrospray tandem mass spectrometry (LC–MS/MS). The tested sample treatment methodologies were: (1) liquid–liquid partitioning with acetonitrile followed by dispersive solid-phase extraction clean-up using GCB, PSA and C18 sorbents (QuEChERS method – modified for fatty vegetables) and (2) matrix solid-phase dispersion (MSPD) using aminopropyl as sorbent material and a final clean-up performed in the elution step using Florisil. An LC–MS/MS method covering 104 multiclass pesticides was developed to examine the performance of these two protocols. The separation of the compounds from the olive extracts was achieved using a short C18 column (50 mm × 4.6 mm i.d.) with 1.8 μm particle size. The identification and confirmation of the compounds was based on retention time matching along with the presence (and ratio) of two typical MRM transitions. Limits of detection obtained were lower than 10 μg kg−1 for 89% analytes using both sample treatment protocols. Recoveries studies performed on olives samples spiked at two concentration levels (10 and 100 μg kg−1) yielded average recoveries in the range 70–120% for most analytes when QuEChERS procedure is employed. When MSPD was the choice for sample extraction, recoveries obtained were in the range 50–70% for most of target compounds. The proposed methods were successfully applied to the analysis of real olives samples, revealing the presence of some of the target species in the μg kg−1 range. Besides the evaluation of the sample preparation approaches, we also discuss the use of advanced software features associated to MRM method development that overcome several limitations and drawbacks associated to MS/MS methods (time segments boundaries, tedious method development/manual scheduling and acquisition limitations). This software feature recently offered by different vendors is based on an algorithm that associates retention time data for each individual MS/MS transition, so that the number of simultaneously traced transitions throughout the entire chromatographic run (dwell times and sensitivity) is maximized.  相似文献   

4.
Semicarbazide (SEM), the marker residue for the banned nitrofuran veterinary antibiotic nitrofurazone (NFZ), has been detected regularly in foods (47% of recent nitrofuran EU Rapid Alerts involve SEM). However, the validity of SEM as a definitive marker for NFZ has been undermined by SEM arising from other sources including azodicarbonamide, a plastics blowing agent and flour treatment additive. An inexpensive screening test for SEM in food matrices is needed—all SEM testing currently uses expensive LC-MS/MS instrumentation. We now report the first production of antibodies against derivatised SEM. A novel carboxyphenyl SEM derivative was used to raise a polyclonal antibody that has been incorporated into a semi-quantitative microtitre plate ELISA, validated according to the criteria set out in Commission Decision 2002/657/EC, for use with chicken muscle. The antibody is highly specific for derivatised SEM, cross-reactivity being 1.7% with NFZ and negligible with a wide range of other nitrofurans and poultry drugs. Samples are derivatised with o-nitrobenzaldehyde and simultaneously protease digested before extraction by cation exchange SPE. The ELISA has a SEM detection capability (CCβ) of 0.25 μg kg−1 when a threshold of 0.21 μg kg−1 is applied to the selection of samples for confirmation (lowest observed 0.25 μg kg−1 fortified sample, n = 20), thus satisfying the EU nitrofurans’ minimum required performance limit of 1 μg kg−1. NFZ-incurred muscles (12) containing SEM at 0.5-5.0 μg kg−1 by LC-MS/MS, all screened positive by this ELISA protocol which is also applicable to egg and chicken liver.  相似文献   

5.
A capillary zone electrophoresis method with UV detection was developed for the simultaneous detection and quantification of three tetracyclines in chicken meat samples: tetracycline (TC), oxytetracycline (OTC) and doxycycline (DOC). The separation conditions were: a running buffer containing 30 mM sodium phosphate, 2 mM EDTA disodium salt and 2.5% 2-propanol, pH 12.0, a 5 s hydrodynamic injection and a 14 kV separation voltage. Two different clean-up methodologies were employed: solid-phase extraction with C18 cartridges and ion exchange with Amberlite XAD7 resin. Analytes were detected at 360 nm in less than 12 min. LODs ranged from 61 μg kg−1 for OTC to 68 μg kg−1 for DOC with C18 cartridges, and 81 μg kg−1 for DOC to 89 μg kg−1 for TC with Amberlite XAD7 resin. The recoveries for TC, OTC and DOC obtained by both methods were between 85 and 95%, and the peak area repeatability for all of the samples was below 5% in all cases. Twenty-four samples of commercial chicken drumsticks were examined with both clean-up methodologies. In nine cases (37.5%) TC was detected, in a range from 197.8 to 2564.3 μg kg−1, and in seven cases (29.2%) OTC was detected in a range from 83.0 to 2049.3 μg kg−1. DOC was not detected in any of the tested samples. This method would be useful for the routine monitoring of TCs residues in poultry muscle.  相似文献   

6.
A suitable method for the gas chromatographic determination of 10 characteristic carbonyls in biological and oil samples based on the in-drop formation of hydrazones by using 2,4,6-trichlorophenylhydrazine (TCPH), has been developed. The derivatisation-extraction procedure was optimized separately for aqueous and oil samples with respect to the appropriate organic drop solvent, drop volume, in-drop TCPH concentration, sample stirring rate, temperature during single-drop microextraction (SDME), reaction time and headspace-to-sample volume ratio. The optimization showed differentiation of optimum values between the studied matrices. The limits of detection were found to range from 0.001 to 0.003 μg mL−1 for the aqueous biological samples and from 0.06 to 0.20 μg mL−1 for the oil samples. The limits of quantification were in the range of 0.003-0.010 μg mL−1 and 0.020-0.059 μg mL−1 for aqueous and oil samples, respectively. The overall relative standard deviations of the within-day repeatability and between-day reproducibility were <4.4% and <8.2% for the aqueous biological samples and <3.9% and <7.4% for the oxidized oil samples.  相似文献   

7.
To study the characteristics of antimony (Sb) bioaccumulation under high Sb background values, aquatic, amphibious and terrestrial biological samples were collected in the vicinity of the Xikuangshan (XKS) Sb mine area in China. Hydride generation-atomic fluorescence (HG-AFS) analysis showed that Sb concentrations in terrestrial invertebrates (average 30,400 μg kg− 1 dry wt.) were higher than those in aquatic (average 5200 μg kg− 1 dry wt.) and amphibian (average 2300 μg kg− 1 dry wt.) biological samples. Within 1 km distance of the XKS Sb mine area, grasshoppers (Acrida chinensis) and earthworms (Pheretima aspergillum) had the highest Sb amounts of 17,300 ±3200 and 43,600 ± 47,700 μg kg− 1 dry wt., respectively. No Sb biomagnifications were observed. The bioavailability of Sb was found to be lower than those of As and Hg. A preliminary conclusion is that antagonistic effects exist between Sb and Hg accumulation in biological samples from aquatic environments. Our study is the first to report such antagonistic effects between Sb and Hg. If this deduction proves to be correct, it should be taken into consideration in assessing human health risks, especially when Sb and Hg concentrations in the aquatic environments are high.  相似文献   

8.
Streptomycin (STR) and dihydrostreptomycin (DHSTR) are two of the most common aminoglycoside antibiotics used in veterinary medicine. The physicochemical properties of both substances, make their determination challenging. In the present study the development of methods based on ion-pair chromatography (IPC) and on hydrophilic interaction chromatography (HILIC), for the determination of the above mentioned aminoglycosides in the range of 100–1000 μg L−1 is described. The two methods were validated according to EU requirements for residues in food. The recoveries for the IPC method were 69.3% and 56.5% of STR and DHSTR, respectively, and for HILIC method 85.5% and 72.3%, respectively. The intra- and inter-day precision, studied at 100, 200 and 300 μg kg−1 levels in milk samples, gave %RSD ≤ 13 for both methods. LOQs for the HILIC method were 14 μg kg−1 for both analytes and for the IPC method were 109 and 31 μg kg−1, for STR and DHSTR, respectively. The sensitivity of the HILIC method is 80 and 210 times greater than that of the ICP method, for STR and DHSTR, respectively.  相似文献   

9.
An improved LC-MS/MS method for the determination of semicarbazide in whole egg is described. Waters OASIS-MCX cation exchange purification cartridges increased the sensitivity for analysis by LC-MS/MS. The validation study was carried out according to criteria and requirements of Commission Decision 2002/657/EC for confirmatory analysis and provided the data as follows: The correlation coefficient for the matrix calibration curve, in the range of 0–5 μg kg−1, was r = 0.9968. The detection capability and decision limit, measured according to ISO11843-2, were CCα = 0.20 μg kg−1 and CCβ = 0.25 μg kg−1. Repeatability (CVSr) and within-laboratory reproducibility (CVSwr) determined for the concentration levels of 0.2, 0.5 and 1.0 μg kg−1 SEM ranged from 11.9 to 5.7% and 11.8 to 6.3%, respectively. The validated method was applied to investigate SEM stability in incurred materials (egg homogenates) during long-term storage at −20 °C and 4 °C. The study proved by a two-sampling test that SEM at levels of 17. 7, 1.2, 10.6 and 0.47 μg kg−1 was stable for up to 12 months.  相似文献   

10.
The status of pesticide pollution in Tanzania   总被引:1,自引:0,他引:1  
The paper summarises the findings of recent studies carried out to assess the levels of pesticide residues in water, sediment, soil and some biota collected from different parts of Tanzania. Although the intention is to cover the whole country, so far the studies have focused on areas with known large-scale pesticide use (Southern Lake Victoria and its basin, TPC sugar Plantations in Kilimanjaro region, Dar es Salaam coast, Mahonda-Makoba basin in Zanzibar) and a former pesticide storage area at Vikuge Farm in Coast region). Analysis of the cleaned extracts in GC-ECD/NPD revealed the dominance of organochlorines in all samples. Generally, low levels of residues were found in areas associated with agricultural pesticide use but the levels in the former storage areas were substantially high. DDT and HCH were dominant in all the studied areas. In the former areas, levels of ∑DDT in water, sediments and soil were up to 2 μg L−1, 700 μg kg−1 and 500 μg kg−1, respectively, while those of ∑HCH were up to 0.2 μg L−1, 132 μg kg−1 and 60 μg kg−1, respectively. The levels in aquatic biota were much higher than those in the water most likely due to bioaccumulation. In the former storage area at Vikuge the levels of pesticides in the topsoil were alarmingly high. Their concentrations were up to 282,000 mg kg−1 dry weight for ∑DDT and up to 63,000 mg kg−1 for ∑HCH. A herbicide, pendimethalin [N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine], was also found at concentrations up to 41,000 mg kg−1 dry weight. Thus the total pesticide content in the soil was almost 40%. Following these findings the area is now earmarked to be a demonstration site for a proposed GEF project ‘Bioremediation of POPs impacted soils in East Africa’.  相似文献   

11.
The luminescence based bacterial sensor strains Pseudomonas fluorescens OS8 (pTPT11) for mercury detection and Pseudomonas fluorescens OS8 (pTPT31) for arsenite detection were used in testing their application in detecting heavy metals in soil extracts. Three different soil types (humus, mineral and clay) were spiked with 1, 100 or 500 μg g−1 Hg2+ or As3+. Samples were taken 1, 14 and 30 days and extracted with water, ammonium acetate, hydrogen peroxide and nitric acid to represent water soluble, bioavailable, organic matter bound and residual fractions, respectively. The lowest mercury-concentration measured using biosensor (0.003 μg kg−1) was considerably lower than by chemical method (0.05 μg kg−1). The sensor strain with pTPT31 appeared to have a useful detection range similar to that of chemical methods. Concentration results with chemical and biosensor analysis were very similar in the case of mercury-spiked samples. Although some of the arsenite samples showed higher variation between methods, it is concluded that the bacteria can be used as an alternative traditional methods for different types of samples.  相似文献   

12.
A supramolecular solvent consisting of vesicles, made up of equimolecular amounts of decanoic acid (DeA) and tetrabutylammonium decanoate (Bu4NDe), dispersed in a continuous aqueous phase, is proposed for the extraction of benzimidazolic fungicides (BFs) from fruits and vegetables. Carbendazim (CB), thiabendazole (TB) and fuberidazole (FB) were extracted in a single step and no clean-up or concentration of extracts was needed. The high extraction efficiency obtained for BFs was a result of the different types of interactions provided by the supramolecular solvent (e.g. hydrophobic and hydrogen bonds) and the high number of solubilisation sites it contains. Besides simple and efficient, the proposed extraction approach was rapid, low-cost, environment friendly and it was implemented using conventional lab equipments. The target analytes were determined in the supramolecular extract by LC/fluorescence detection. They were separated in a Kromasil C18 (5 μm, 150 mm × 4.6 mm) column using isocratic elution [mobile phase: 60:40 (v/v) 50 mM phosphate buffer (pH 4)/methanol] and quantified at 286/320 nm (CB) and 300/350 nm (TB and FB) excitation/emission wavelengths, respectively. Quantitation limits provided by the supramolecular solvent-based microextraction (SUSME)/LC/fluorescence detection proposed method for the determination of CB, TB and FB in fruits and vegetables were 14.0, 1.3 and 0.03 μg kg−1, respectively, values far below the current maximum residue levels (MRLs) established by the European Union, i.e. 100-2000 μg kg−1 for CB, 50-5000 μg kg−1 for TB and 50 μg kg−1 for FB. The precision of the method, expressed as relative standard deviation, for inter-day measurements (n = 13) was 3.3% for CB (50 μg kg−1), 3.5% for TB (10 μg kg−1) and 2.8% for FB (0.5 μg kg−1) and recoveries for fruits (oranges, tangerines, lemons, limes, grapefruits, apples, pears and bananas) and vegetables (potatoes and lettuces) fortified at the μg kg−1 level were in the interval 93-102%.  相似文献   

13.
Supramolecular solvents are here proposed firstly as extractants in solid sample microextractions. The approach was evaluated by extracting flumequine (FLU) and oxolinic acid (OXO), two widely used veterinary medicines, from fish and shellfish muscle using a supramolecular solvent made up of decanoic acid (DeA) reverse micelles. The antibiotics were extracted in a single step (∼15 min), at room temperature, using 400 μL of solvent. After centrifugation, an aliquot of the extract was directly analyzed by liquid chromatography and fluorescence, without the need of clean-up or solvent evaporation. Contrary to the previously reported methods, both OXO and FLU were quantitatively extracted from fish and shellfish, independently of sample composition. The high extraction efficiencies observed for these antibiotics were a consequence of their amphiphilic character which resulted in the formation of DeA-OXO and DeA-FLU mixed aggregates. The quality parameters of this quantitative method including sensitivity, linearity, selectivity, repeatability, trueness, ruggedness, stability, decision limit and detection capability were evaluated according to the 2002/657/EC Commission Decision. Quantitation limits in the different samples analyzed (salmon, sea trout, sea bass, gilt-head bream, megrim and prawns) ranged between 6.5 and 22 μg kg−1 for OXO and, 5 and 15 μg kg−1 for FLU. These limits were far below the current maximum residue limits (MRLs) set by the European Union (EU) (i.e. 100 and 600 μg kg−1, for OXO and FLU, respectively). The trueness of the method was determined by analyzing a Certified Reference Material (CMR, BCR®-725) consisting of a lyophilised salmon tissue material. Recoveries for fortified samples (50–100 μg kg−1 of OXO and 50–600 μg kg−1 of FLU) and their relative standard deviations were in the intervals 99–102% and 0.2–5%, respectively. The repeatability, expressed as relative standard deviation, was 3.6% for OXO and 2.3% for FLU ([OXO] = [FLU] = 200 μg kg−1 and n = 11).  相似文献   

14.
A high-performance liquid chromatography-fluorescence detection method was optimized and validated to determine tetracyclines residues in bovine milk. Post-column derivatization using metal complexation in non-aqueous reagent increased the fluorescence of chelates by a factor up to 2.54 compared to water (signal-to-noise ratio enhancement). Overall recoveries ranged from 61 to 115%, with RSDr from 5 to 15% (n = 54). Detection limits ranged from 5 to 35 μg kg−1. Limits of quantification were established at 50 μg kg−1. Decision limits (CCα) were 109, 108 and 124 μg kg−1 and detection capabilities (CCβ) 119, 117 and 161 μg kg−1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The method was applied successfully in a national monitoring program.  相似文献   

15.
A simple and cost effective sample pre-treatment method, dispersive liquid–liquid microextraction (DLLME), has been developed for the extraction of six fluoroquinolones (FQs) from chicken liver samples. Clean DLLME extracts were analyzed for fluoroquinolones using liquid chromatography with diode array detection (LC-DAD). Parameters such as type and volume of disperser solvent, type and volume of extraction solvent, concentration and composition of phosphoric acid in the disperser solvent and pH were optimized. Linearity in the concentration range of 30–500 μg kg−1 was obtained with regression coefficients ranging from 0.9945 to 0.9974. Intra-day repeatability expressed as % RSD was between 4 and 7%. The recoveries determined in spiked blank chicken livers at three concentration levels (i.e. 50, 100 and 300 μg kg−1) ranged from 83 to 102%. LODs were between 5 and 19 μg kg−1 while LOQs ranged between 23 and 62 μg kg−1. All of the eight chicken liver samples obtained from the local supermarkets were found to contain at least one type of fluoroquinolone with enrofloxacin being the most commonly detected. Only one sample had four fluoroquinolone antibiotics (ciprofloxacin, difloxacin, enrofloxacin, norfloxacin). Norfloxacin which is unlicensed for use in South Africa was also detected in three of the eight chicken liver samples analyzed. The concentration levels of all FQs antibiotics in eight samples ranged from 8.8 to 35.3 μg kg−1, values which are lower than the South African stipulated maximum residue limits (MRL).  相似文献   

16.
The development of a direct competitive enzyme-linked immunosorbent assay (ELISA) based on polyclonal antibodies specific for semicarbazide (SEM) is described. Molecular modelling of the hapten mimics and other key components of the assay system was conducted to explain antibody properties in relation to hapten design. The small aliphatic molecule SEM was coupled to 3-carboxybenzaldehyde to produce carboxyphenyl-SEM (CPSEM), for the generation of specific antibodies. Five rabbits produced antibodies against NPSEM (used in direct and indirect ELISA formats) exhibiting a 50% binding inhibition level (IC50 values) of 0.06-2.28 μg L−1 in assay buffer for SEM. The most sensitive indirect assay based on the antibody MVK39 showed a high dynamic range providing a linear readout in the range of 0.01-0.2 μg L−1. Antibody MVK31 (IgG) allowed specific SEM detection at an IC50 = 0.14 μg L−1 in direct ELISA and was evaluated using solvent extracted SEM-spiked porcine and baby food samples. Recovery levels determined from fortified samples (0.5, 1.0, 1.5, 5, 10 and 20 μg kg−1) of porcine and baby food ranged from 82.9 to 105.3%, respectively, with a coefficient of variation less than 15.5%. Respective detection capability and threshold of the assay for porcine muscle, set on the basis of acceptance of no false negative results, was 0.3 and 0.11 μg kg−1.  相似文献   

17.
This paper describes a method for the detection and quantification of 38 residues of the most widely used anthelmintics (including 26 veterinary drugs belonging to the benzimidazole, macrocyclic lactone and flukicide classes) in bovine liver using two different protocols for MRL and non-MRL levels. A dual validation approach was adopted to reliably quantify anthelmintic residues over an extended concentration range (1-3000 μg kg−1). Sample extraction and purification was carried out using a modified QuEChERS method. A concentration step was included when analysing in the low μg kg−1 range. Rapid analysis was carried out by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which was capable of detecting residues to <2 μg kg−1. The method has been single-laboratory validated according to the 2002/657/EC guidelines and met acceptability criteria in all but a few cases. The inclusion of 19 internal standards, including 14 isotopically labelled internal standards, improved accuracy, precision, decision limit (CCα) and detection capability (CCβ).  相似文献   

18.
This paper reports a multiresponse optimization of an extraction procedure in the simultaneous determination of malachite green (MG) and its metabolite (leucomalachite green, LMG) in fish by liquid chromatography with triple quadrupole mass spectrometry (LC–MS/MS). Prior to optimization, the active factors of the extraction procedure were determined by a screening experimental design. Then, in the optimal experimental conditions of the extraction, MG and LMG have been determined by using a three-way calibration model based on parallel factor analysis (PARAFAC). The procedure fulfils the performance requirements for a confirmatory method established by the European Union Decision 2002/657/EC. This norm establishes maximum permitted tolerances for relative abundance of the precursor/product ion pairs. There is a reported contradiction in the literature related to the fact that there are standard samples whose concentration is greater than CCα but the maximum permitted tolerances are not fulfilled in the identification of the analytes. In this work, it is shown that with the information provided by PARAFAC this contradiction is avoided. The figures of merit for PARAFAC and univariate calibration procedures were evaluated under optimal conditions in the extraction step. The figures of merit obtained were in the range of 0.13–0.23 μg kg−1 for the decision limit, CCα, (α = 0.01) and 0.22–0.39 μg kg−1 for the detection capability, CCβ, (β = 0.05), whereas mean relative errors in absolute value were in the range of 2.8–4.6% for MG and LMG with PARAFAC calibration. The proposed optimized extraction procedure using a PARAFAC calibration was also applied in the determination of MG and LMG in gilthead bream samples: the decision limit was in the range of 0.45–0.55 μg kg−1, the detection capability was in the range of 0.76–0.92 μg kg−1 for MG and LMG. Trueness was likewise confirmed and the mean of the absolute values of relative errors were between 4.2% and 7.2%.  相似文献   

19.
A simpler UV-vis spectrophotometric method was investigated for hydroquinone (HQ) determination using KMnO4 as oxidizing agent for conversion of HQ to p-benzoquinone (BQ) as well as signal enhancer. Various parameters such as analytical wavelength, stability time, temperature, pH, solvent effect and interference of chemicals were checked and parameters optimized by using 1 μg ml−1 standard solution of HQ. Beer's Law was applicable in the range of 0.07-2 μg ml−1 and 0.005-0.05 μg ml−1 at 245.5 nm and at 262 nm for aqueous standard solutions of HQ with linear regression coefficient value of 0.9978 and 0.9843 and detection limit of 0.021 μg ml−1 and 0.0016 μg ml−1 HQ, respectively. Standard deviation of 1.7% and 2.4% was true for 1 μg ml−1 and 0.03 μg ml−1 HQ solution (n = 11) run at respective wavelengths. The method was successfully applied to dilute waste photographic developer samples for free HQ determination.  相似文献   

20.
The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 μg kg−1 were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 μg kg−1 for acrylamide. The GC-MECD method achieved quantification limits of 10 μg kg−1 in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 μg kg−1 detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号