首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
The crystal structures of the first stable α‐diol from the α‐halogenopyruv­amide series, 3‐chloro‐2,2‐di­hydroxy‐3‐phenyl­propan­amide, C9H10­ClNO3, and three products [3‐(4‐chloro­phenyl)‐2‐cyano‐2,3‐epoxy­propan­amide, C10H7­ClN2O2, 3‐bromo‐2‐cyano‐2‐hydroxy‐3‐p‐tolyl­propan­amide, C11H11Br­N2O2, 3‐bromo‐2‐oxo‐3‐p‐tolyl­propan­amide, C10H10­BrNO2] obtained during the systematic synthesis of α‐halogenopyruv­amides are reported. The crystal structures are dominated by hydrogen bonds involving an amide group. The stability of the geminal diol could be ascribed to hydrogen bonds which involve both hydroxyl groups.  相似文献   

2.
An efficient synthesis of novel 2‐aryl‐3‐(phenylamino)‐2,3‐dihydroquinazolin‐4(1H)‐one derivatives using KAl(SO4)2.12H2O (Alum) as a catalyst from an aldehyde and 2‐amino‐N‐phenylbenzohydrazine in ethanol is described. All synthesized derivatives were screened for anti‐bacterial activity. Some compounds exhibited promising anti‐bacterial activity with reference to standard antibiotics.  相似文献   

3.
Since the isolation of brevetoxin‐B, a red tide toxin, many bioactive marine natural products featuring synthetically challenging trans‐fused polycyclic ether ring systems have been reported. We have developed SmI2‐induced cyclization of β‐alkoxyacrylate with aldehyde, affording 2,6‐syn‐2,3‐trans‐tetrahydropyran (THP) or 2,7‐syn‐2,3‐trans‐oxepane with complete stereoselection, as a key reaction of efficient iterative and bi‐directional strategies for the construction of these polycyclic ethers. This reaction is also applicable to the synthesis of 3‐, 5‐, and 6‐methyl‐THPs and 3,5‐dimethyl‐THP. The synthesis of 2‐methyl‐ and 2,6‐dimethyl‐THPs was accomplished by means of a unique methyl insertion. Recently, the SmI2‐induced cyclization was extended to similar reactions using β‐alkoxyvinyl sulfone and sulfoxide. Reaction of (E)‐ and (Z)‐β‐alkoxyvinyl sulfone‐aldehyde afforded 2,6‐syn‐2,3‐trans‐ and 2,6‐syn‐2,3‐cis‐ THPs, respectively. Reaction of (E)‐β‐alkoxyvinyl (R)‐ and (S)‐sulfoxides gave 2,6‐anti‐2,3‐cis‐ and 2,6‐syn‐2,3‐trans‐THPs, respectively. Reaction of (Z)‐β‐alkoxyvinyl (R)‐sulfoxides gave 2,6‐syn‐2,3‐cis‐THP and an olefinic product, while that of (Z)‐β‐alkoxyvinyl (S)‐sulfoxide afforded a mixture of many products. These SmI2‐induced cyclizations have been applied to the total syntheses of various natural products, including brevetoxin‐B, mucocin, pyranicin, and pyragonicin. Synthetic studies on gambierol and maitotoxin are also introduced. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 10: 159–172; 2010: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900027  相似文献   

4.
This paper describes the synthesis of (Z + E)‐1‐[4‐(2‐(cyclopentadienyltricarbonylmanganese)‐2‐oxo‐ethoxy)phenyl]‐1,2‐di(p‐hydroxyphenyl)‐but‐1‐ene. Two synthetic pathways were explored. The best pathway consisted of the alkylation of 1,2‐bis‐[4‐(tert‐butyl‐dimethylsilyloxy)phenyl]‐1‐(4‐hydroxyphenyl)but‐1‐ene with BrCH2COOEt. The ester obtained was transformed into the Weinreb amide by reaction with HN(OMe)Me–HCl. The reaction of lithium manganese tricarbonylcyclopentadienide with the Weinreb amide produced 1‐[4‐(2‐(cyclopentadienyltricarbonylmanganese)‐2‐oxo‐ethoxy)phenyl]‐1,2‐di(p‐tert‐butyldimethylsiloxyphenyl)‐but‐1‐ene. The deprotection of phenolic functions of the latter compound led to the formation of the final compound. The Z and E isomers could be separated but the isomerization of these isomers from one to another is an easy process. The Z + E compound 2 was tested against the hormone‐dependent MCF‐7 and hormone‐independent MDA‐MB‐231 breast cancer cell lines. The IC50 values of compound 2 were 4.80 ± 2.00 µm and 4.79 ± 0.70 µm for MCF‐7 cells and MDA‐MB‐231 cells, respectively, which was three times better than the ferrocenyl analogue. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A novel method for the stereoselective synthesis of (Z)‐4‐(2‐bromovinyl)benzenesulfonyl azide by simultaneous azidation and debrominative decarboxylation of anti‐2,3‐dibromo‐3‐(4‐chlorosulfonylphenyl)propanoic acid using NaN3 only was developed. Facile transformation of (Z)‐4‐(2‐bromovinyl)benzenesulfonyl azide to (Z)‐N‐[4‐ (2‐bromovinyl)benzenesulfonyl]imidates was also achieved by Cu‐catalyzed three‐component coulping of (Z)‐4‐(2‐bromovinyl)benzenesulfonyl azide, terminal alkynes and alcohols/phenols.  相似文献   

6.
The first total synthesis of the α‐oxo amide‐based natural product, N‐(3‐guanidinopropyl)‐2‐(4‐hydroxyphenyl)‐2‐oxoacetamide ( 3 ), isolated from aqueous extracts of hydroid Campanularia sp., has been achieved. The α‐oxo amide 12 , prepared via the oxidative amidation of 1‐[4‐(benzyloxy)phenyl]‐2,2‐dibromoethanone ( 9a ) with 4‐{[(tert‐butyl)(dimethyl)silyl]oxy}butan‐1‐amine ( 10a ), has been used as the key intermediate in the total synthesis of 3 as HBr salt. On the way, an expeditious total synthesis of polyandrocarpamide C ( 2c ), isolated from marine ascidian Polyandrocarpa sp., was carried out in four steps.  相似文献   

7.
The concept of a synergistic double catalytic kinetic resolution (DoCKR) as described in this article was successfully applied to racemic acyclic anti ‐1,3‐diols, a common motif in natural products. This process takes advantage of an additive Horeau amplification involving two successive enantioselective organocatalytic acylation reactions, and leads to diesters and recovered diols with high enantiopurities. It was first developed with C 2‐symmetrical diols and then further extended to non‐C 2‐symmetrical anti diols to prepare useful chiral building blocks. The protocol is highly practical as it only requires 1 mol % of a commercially available organocatalyst and leads to easily separable products. This procedure was applied to the shortest reported total synthesis of (+)‐cryptocaryalactone, a natural product with anti‐germinative activity.  相似文献   

8.
Total synthesis of the polyhydroxy caprolactam amide natural product, bengamide E, is accomplished starting from tartaric acid. Key reactions in the synthesis include desymmetrization of the bis(dimethylamide) unit of tartaric acid, Zn(BH4)2‐mediated anti‐selective reduction, and a Horner–Wadsworth–Emmons olefination.  相似文献   

9.
The title compound, C24H25NO7, is a racemic mixture of 2,3‐di­hydro‐1H‐pyrrol‐3‐ones. It crystallizes in the triclinic system, space group P1, with Z = 2. The asymmetric unit contains two enantiomorphic mol­ecules and the structure is stabilized by hydrogen‐bond contacts.  相似文献   

10.
(?)‐Hybridalactone ( 1 ) is a marine eicosanoid isolated from the red alga Laurencia hybrida. This natural product contains cyclopropane, cyclopentane, 13‐membered macrolactone and epoxide ring systems incorporating seven stereogenic centers. Moreover, this compound has an acid‐labile skipped Z,Z‐diene motif. In this paper, we report on the total synthesis of (?)‐hybridalactone ( 1 ). The unique eicosanoid (?)‐hybridalactone ( 1 ) was synthesized starting from optically active γ‐butyrolactone 2 in a linear sequence comprising 21 steps with an overall yield of 21.9 %. A key step in the synthesis of (?)‐hybridalactone ( 1 ) is the methyl phenylsulfonylacetate‐mediated one‐pot synthesis of the cis‐cyclopropane‐γ‐lactone derivative. This reaction provided an efficient and stereoselective access to cis‐cyclopropane‐γ‐lactone 12 . Further elaboration of the latter compounds through desulfonylation, epoxidation, oxidation, Wittig olefination and Shiina macrolactonization afforded (?)‐hybridalactone.  相似文献   

11.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

12.
Starting from readily available (S)‐styrene oxide an asymmetric synthesis is described of the naturally occurring anti‐HIV spirolactone (?)‐hyperolactone C, which possesses adjacent fully substituted stereocenters. The key step involves a stereocontrolled RhII‐catalysed oxonium ylide formation–[2,3] sigmatropic rearrangement of an α‐diazo‐β‐ketoester bearing allylic ether functionality. From the resulting furanone, an acid‐catalysed lactonisation and dehydrogenation gives the natural product.  相似文献   

13.
The two title semicarbazones, namely 2,3‐dihydro‐1H‐indole‐2,3‐dione 3‐semicarbazone, C9H8N4O2, (I), and 1‐methyl‐2,3‐dihydro‐1H‐indole‐2,3‐dione 3‐semicarbazone, C10H10N4O2, (II), show the same configuration, viz. Z around the imine C=N bond and E around the C(O)—NH2 bond, stabilized by two intra­molecular hydrogen bonds. The presence of a methyl group on the isatin N atom determines the difference in the packing; in (I), the mol­ecules are linked into chains which lie in the crystallographic (102) plane and run perpendicular to the b axis, while in (II), the mol­ecules are arranged to form helices running parallel to a crystallographic screw axis in the a direction.  相似文献   

14.
1,8‐Diazabicyclo[5.4.0]undec‐7‐ene (DBU) reacted with benzyl halides in CH2Cl2/H2O 1 : 1 (v/v) to afford a mixture of eleven‐membered cyclic amide 1 and seven‐membered cyclic amide 2 . When the reaction was carried out in EtOH/H2O 1 : 1 (v/v), product 2 was obtained as the major product. 1,5‐Diazabicyclo[4.3.0]non‐5‐ene (DBN) gave the five‐membered cyclic amide 3 as the sole product under the same reaction conditions.  相似文献   

15.
The total synthesis of the two isomeric macrocyclic enamides 2 and 17 is described. The precursor 14 was synthesized by means of template‐assisted macrocyclization (Scheme 2). Isomerization of 14 in the presence of [Fe(CO)5] gave 2 and 17 (Scheme 4). Structure 2 was previously assigned to the alkaloid neoperiphylline. However, the synthetic 2 showed completely different properties compared to the earlier described data of the natural compound. Surprisingly, analytical data of the second synthetic product 17 were very close to those of the natural neoperiphylline. We conclude that the previously assigned structure of neoperiphylline is erroneous and should be corrected to that of (?)‐(4S,12Z)‐4‐phenyl‐9‐[(2E)‐3‐phenylprop‐2‐enoyl]‐1,5,9‐triazacyclotridec‐12‐en‐2‐one ( 17 ).  相似文献   

16.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

17.
The proline‐catalyzed addition of various aliphatic aldehydes to sterically hindered 2‐aryl‐substituted 3H‐indol‐3‐ones affords 2,2‐disubstituted 2,3‐dihydro‐1H‐indol‐3‐one derivatives with excellent enantioselectivities. In addition, the synthesis of a chiral derivative, (S)‐2‐(2‐bromophenyl)‐2,3‐dihydro‐2‐(2‐hydroxyethyl)‐1H‐indol‐3‐one, which can be used as an intermediate for the preparation of the natural product hinckdentine A was accomplished with a high level of enantioselectivity.  相似文献   

18.
The reaction of 1,1,2‐ethenetricarboxylic acid 1,1‐diethyl ester with E‐3‐(2‐furyl)‐2‐propenylamines under the amide condensation conditions (EDCI/HOBt/Et3N) on heating at 80–110°C afforded cis‐fused tricyclic compounds, furo[2,3‐f]isoindoles as major product. On the other hand, the reaction with E‐3‐(3‐furyl)‐2‐propenylamines afforded trans‐fused tricyclic compounds predominantly. The formation of amide/[4 + 2] cycloaddition/hydrogen‐shift reactions proceed sequentially. The observed stereoselectivity of the fused rings has been investigated by the density functional theory calculations. The reaction of 1,1,2‐ethenetricarboxylic acid 1,1‐diethyl ester with 3‐(3‐pyridinyl)‐2‐propen‐1‐amine under the amide condensation conditions afforded HOBt‐incorporated 3,4‐trans‐pyrrolidine selectively. The chemoselectivity and stereoselectivity of the reactions with (3‐heteroaryl)‐2‐propen‐1‐amines depend on the nature of heteroarenes.  相似文献   

19.
A convenient, efficient, and generally applicable method was developed for the synthesis of terminal alkynes from anti‐3‐aryl‐2,3‐dibromopropanoic acids in the presence of DMSO and K2CO3.  相似文献   

20.
A number of aryl 3‐arylprop‐2‐ynoates 3 has been prepared (cf. Table 1 and Schemes 3 – 5). In contrast to aryl prop‐2‐ynoates and but‐2‐ynoates, 3‐arylprop‐2‐ynoates 3 (with the exception of 3b ) do not undergo, by flash vacuum pyrolysis (FVP), rearrangement to corresponding cyclohepta[b]furan‐2(2H)‐ones 2 (cf. Schemes 1 and 2). On melting, however, or in solution at temperatures >150°, the compounds 3 are converted stereospecifically to the dimers 3‐[(Z)‐diarylmethylidene]‐2,3‐dihydrofuran‐2‐ones (Z)‐ 11 and the cyclic anhydrides 12 of 1,4‐diarylnaphthalene‐2,3‐dicarboxylic acids, which also represent dimers of 3 , formed by loss of one molecule of the corresponding phenol from the aryloxy part (cf. Scheme 6). Small amounts of diaryl naphthalene‐2,3‐dicarboxylates 13 accompanied the product types (Z)‐ 11 and 12 , when the thermal transformation of 3 was performed in the molten state or at high concentration of 3 in solution (cf. Tables 2 and 4). The structure of the dihydrofuranone (Z)‐ 11c was established by an X‐ray crystal‐structure analysis (Fig. 1). The structures of the dihydrofuranones 11 and the cyclic anhydrides 12 indicate that the 3‐arylprop‐2‐ynoates 3 , on heating, must undergo an aryl O→C(3) migration leading to a reactive intermediate, which attacks a second molecule of 3 , finally under formation of (Z)‐ 11 or 12 . Formation of the diaryl dicarboxylates 13 , on the other hand, are the result of the well‐known thermal Diels‐Alder‐type dimerization of 3 without rearrangement (cf. Scheme 7). At low concentration of 3 in decalin, the decrease of 3 follows up to ca. 20% conversion first‐order kinetics (cf. Table 5), which is in agreement with a monomolecular rearrangement of 3 . Moreover, heating the highly reactive 2,4,6‐trimethylphenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3f ) in the presence of a twofold molar amount of the much less reactive phenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3g ) led, beside (Z)‐ 11f , to the cross products (Z)‐ 11fg , and, due to subsequent thermal isomerization, (E)‐ 11fg (cf. Scheme 10), the structures of which indicated that they were composed, as expected, of rearranged 3f and structurally unaltered 3g . Finally, thermal transposition of [17O]‐ 3i with the 17O‐label at the aryloxy group gave (Z)‐ and (E)‐[17O2]‐ 11i with the 17O‐label of rearranged [17O]‐ 3i specifically at the oxo group of the two isomeric dihydrofuranones (cf. Scheme 8), indicating a highly ordered cyclic transition state of the aryl O→C(3) migration (cf. Scheme 9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号