首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New heteroatom polyoxovanadates (POVs) were synthesized by applying a water‐soluble high‐nuclearity cluster as new synthon. The [V15Sb6O42]6? cluster shell exhibiting D3 symmetry was in situ transformed into completely different cluster shells, namely, the α‐[V14Sb8O42]4? isomer with D2d and the β‐[V14Sb8O42]4? isomer with D2h symmetry. The solvothermal reaction of {Ni(en)3}3[V15Sb6O42(H2O)x] ? 15 H2O (x=0 or 1; en=ethylenediamine) in water led to the crystallization of [{Ni(en)2}2V14Sb8O42] ? 5.5 H2O containing the β‐isomer. The addition of [Ni(phen)3](ClO4)2 ? 0.5 H2O (phen=1,10‐phenanthroline) to the reaction slurry gave the new compound {Ni(phen)3}2[V14Sb8O42] ? phen ? 12 H2O with the α‐isomer. Both transformation reactions are complex due the change of symmetry, the chemical composition, and rearrangement of the VO5 square pyramids and Sb2O5 handle‐like moieties.  相似文献   

2.
Mixed‐valence polyoxovanadates(IV/V) have emerged as one of the most intricate class of supramolecular all‐inorganic host species, able to encapsulate a wide variety of smaller guest templates during their self‐assembly formation process. As showcased herein, the incorporation of guests, though governed solely by ultra‐weak electrostatic and van der Waals interactions, can cause drastic effects on the electronic and magnetic characteristics of the shell complex of the polyoxovanadate. We address the question of methodology for the magnetochemical analysis of virtually isostructural {VIV/V22O54}‐type polyoxoanions of D2d symmetry enclosing diamagnetic VO2F2? (C2v), SCN? (C∞v), or ClO4? (Td) template anions. These induce different polarization effects related to differences in their geometric structures, symmetry, ion radii, and valence shells, eventually resulting in a supramolecular modulation of magnetic exchange between the V(3d) electrons that are partly delocalized over the {V22O54} shells. We also include the synthesis and characterization of the novel [VVO2F2@HVIV8VV14O54]6? system that comprises the rarely encountered discrete difluorovanadate anion as a quasi‐isolated guest species.  相似文献   

3.
A novel polyoxovanadate structural type, with an average nuclearity of V16, formed by a mixture of two different polyoxovananadates: {V15O36(Cl)} and{V17O40(Cl)} has been synthesized and characterized. The title compound, formulated as [Ni(phen)3]2{[V15O36(Cl)]0.5[V17O40(Cl)]0.5} · H2O (1) (phen = 1,10′-phenanthroline), presents two different polyoxovanadate architectures: {V15O36(Cl)} and {V17O40(Cl)}, with the last one representing a new framework type in polyoxovanadate chemistry. Here, we present the synthesis of this novel polyoxovanadate under hydrothermal conditions and its characterization by IR and XPS spectroscopies, elemental and thermogravimetric analysis, redox titration, magnetic measurements and single-crystal X-ray diffraction.  相似文献   

4.
Two novel organic–inorganic hybrid vanadoantimonate compounds, [Zn2(dien)3][{Zn(dien)}2V16Sb4O42(H2O)]·4H2O (1) and [Zn(dien)2]2 [{Zn(dien)}2(V14Sb8O42)2(H2O)]·4H2O (2) (dien = Diethylenetriamine), have been synthesized hydrothermally at different pH value, and structurally characterized by elemental analyses, FT-IR, XPS, TGA and single crystal X-ray diffraction analysis. Compound 1 is composed of the rare [V16Sb4O42]8− cluster covalently linked by two [Zn(dien)]2+ coordination cations to yield a novel one-dimensional linear chain. Compound 2 exhibits a one-dimensional zigzag chain constructed from the [V14Sb8O42]4− cluster and [Zn(dien)]2+ coordination polymer. The two examples represent the first one-dimensional assemblies based on vanadoantimonate cluster and the metal–organic complex moieties.  相似文献   

5.
A series of nine [Sb7W36O133Ln3M2(OAc)(H2O)8]17? heterometallic anions ( Ln3M2 ; Ln=La–Gd, M=Co; Ln=Ce, M=Ni and Zn) have been obtained by reacting 3 d metal disubstituted Krebs‐type tungstoantimonates(III) with early lanthanides. Their unique tetrameric structure contains a novel {MW9O33} capping unit formed by a planar {MW6O24} fragment to which three {WO2} groups are condensed to form a tungstate skeleton identical to that of a hypothetical trilacunary derivative of the ?‐Keggin cluster. It is shown, for the first time, that classical Anderson–Evans {MW6O24} anions can act as building blocks to construct purely inorganic large frameworks. Unprecedented reactivity in the outer ring of these disk‐shaped species is also revealed. The Ln3M2 anions possess chirality owing to a {Sb4O4} cluster being encapsulated in left‐ or right‐handed orientations. Their ability to self‐associate in blackberry‐type vesicles in solution has been assessed for the Ce3Co2 derivative.  相似文献   

6.
We describe the synthesis, structures and dielectric properties of new perovskite oxides of the formula, Ba3MIIITiMVO9, for MIII = Fe, Ga, Y, Lu and MV = Nb, Ta, Sb. While MV = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where MIII/Ti/MV metal-oxygen octahedra are corner-connected, the MV = Sb oxides show a distinct preference for the 6H structure, where SbV/TiIV metal-oxygen octahedra share a common face forming (Sb,Ti)O9 dimers that are corner-connected to the MIIIO6 octahedra. The preference of antimony oxides (SbV:4d10) for the 6H structure – which arises from a special SbV–O chemical bonding that tends to avoid linear Sb–O–Sb linkages unlike NbV/TaV:d0 atoms which prefer ~180° Nb/Ta–O–Nb/Ta linkages – is consistent with the crystal chemistry of MV–O oxides in general. The dielectric properties reveal a significant difference among MIII members. All the oxides with the 3C structure excepting those with MIII = Fe show a normal low loss dielectric behaviour with ε = 20–60 in the temperature range 50–400 °C; the MIII = Fe members with this structure (MV = Nb, Ta) display a relaxor-like ferroelectric behaviour with large ε values at frequencies ≤1 MHz (50–500 °C).  相似文献   

7.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

8.
The formation of the antimonato polyoxovanadates [V14Sb8(C6H15N3)4O42(H2O)] ? 4H2O ( 1 ), (C6H17N3)2[V15Sb6(C6H15N3)2O42(H2O)] ? 2.5H2O ( 2 ), {C6H15N3}4[V16Sb4O42] 2H2O ( 3 ) (C6H15N3=1‐(2‐aminoethyl)piperazine, AEP) has been studied under solvothermal conditions by using in situ energy dispersive X‐ray diffraction (EDRXD). The syntheses were performed with an identical ratio for Sb2O3 and NH4VO3. If the reactions slurries are not stirred during the solvothermal reaction and by applying 70–75 % amine concentration, the products contain all three compounds, whereas 3 is observed at 80 %. Under stirring conditions, variation of the concentration of AEP led to crystallization of the three different compounds at distinct concentrations, that is, 1 is formed at 75 %, 1 and 2 between 75 and 80 % and 3 at 80 %. At an amine concentration of 77.5 %, first reflections of 2 occurred and at later stages, compound 1 started to crystallize. The sample with the lowest number of VIV species was formed at the lowest amine concentration, whereas crystallization of 3 required the highest concentration. The formation of the compounds occurred without crystalline intermediates and/or precursors. With increasing reaction temperature, the incubation time was significantly reduced.  相似文献   

9.
Reactions of hexaniobate with vanadate in the presence of Ni2+, Zn2+, or Cu2+ have furnished three high‐nuclear vanadium cluster‐substituted heteropolyoxoniobates (HPNs): {Ni(en)3}5H{VVNb8VIV8O44} ? 9 H2O ( 1 ), (H2en)Na2[{Zn(en)2(Hen)}{Zn(en)2(H2O)}2{PNb8VIV8O44}] ? 11 H2O ( 2 ), and Na{Cu(en)2}3{[Cu(en)2]2[PNb8VIV8O44]} ? 11 H2O ( 3 ) (en=1,2‐diaminoethane). Their structures have been determined and characterized by single‐crystal X‐ray diffraction analysis, thermogravimetric analysis (TGA), and elemental analysis. Structural analysis has revealed that compounds 1 – 3 contain similar {V8}‐substituted [XVNb8VIV8O44]11? (X=P, V) clusters, obtained by inserting a {V8} ring into tetravacant HPN [XNb8O36]27?. To the best of our knowledge, compounds 1 – 3 represent the first high‐nuclear vanadium cluster‐substituted HPNs, and compound 1 is the largest vanadoniobate cluster yet obtained in HPN chemistry. Nickel and zinc cations have been introduced into HPNs for the first time, which might promise a more diverse set of structures in this family. Antitumor studies have indicated that compounds 1 and 2 exhibit high activity against human gastric cancer SGC‐7901 cells, SC‐1680 cells, and MG‐63 cells.  相似文献   

10.
New framework materials composed of well-defined vanadium oxide clusters were prepared by low-temperature reactions and characterized by X-ray crystal structure analysis. The structures of these solids contain {V18O42} cages linked into two interpenetrating three-dimensional networks by bridging {M(H2O)4} groups (M=FeII, CoII; see picture).  相似文献   

11.
By incorporating phosphorus(III)‐based anions into a polyoxometalate cage, a new type of tungsten‐based unconventional Dawson‐like cluster, [W18O56(HPIIIO3)2(H2O)2]8?, was isolated, in which the reaction of the two phosphite anions [HPO3]2? within the {W18O56} cage could be followed spectroscopically. As well as full X‐ray crystallographic analysis, we studied the reactivity of the cluster using both solution‐state NMR spectroscopy and mass spectrometry. These techniques show that the cluster undergoes a structural rearrangement in solution whereby the {HPO3} moieties dimerize to form a weakly interacting (O3PH???HPO3) moiety. In the crystalline state the cluster exhibits a thermally triggered oxidation of the two PIII template moieties to form PV centers (phosphite to phosphate), commensurate with the transformation of the cage into a Wells–Dawson {W18O54} cluster.  相似文献   

12.
Reaction of the binary Zintl anion (Sn2Sb2)2? with the β‐diketiminato complex [LCu(NCMe)] (L=nacnac=[(N(C6H3iPr2‐2,6)C(Me))2CH]?) in ethylenediamine or DMF affords the ternary cluster dimer {[CuSn5Sb3]2?}2 ( 1 ) as its [K(crypt‐222)]+ salt. The chemical formulation of 1 is supported by energy‐dispersive X‐ray spectroscopy (EDX) and quantum chemical calculations. Each monomeric part of the dimer represents a trimetallic “[CuSn5Sb3]2?” cluster, with an architecture in between a tricapped trigonal prism and a capped square antiprism. As shown by quantum chemical investigations, the presence of Sb atoms and, in particular, of Cu atoms in the cluster skeleton makes the monomeric unit behave like an inhomogeneous superatom, which clearly prefers to dimerize, thereby producing a relatively short, yet virtually non‐bonding Cu???Cu distance.  相似文献   

13.
Two [V15M6(OH)6O42(Cl)]7? (M = Si for 1, Ge for 2) cluster anions with protonated amines as counterions have been synthesized under hydrothermal conditions and characterized by FT-IR, energy dispersive spectroscopy, XPS, powder X-ray diffraction, thermogravimetric analysis (TGA), elemental analysis, and single-crystal X-ray analyses. Both compounds consist of {V15M6O42(OH)6(Cl)} (M = Si for 1, Ge for 2), which are derived from {V18O42} by substitution of three {VO5} square pyramids with three {Si2O5(OH)2/Ge2O5(OH)2} units. It represents the first example of cage-like polyoxovanadates (POVs) containing three (Si/Ge)2O5(OH)2 units. There are extensive hydrogen bonding interactions between POVs and organoamines in 1 and 2. Compound 1 presents a close-packed layer aggregate, while 2 exhibits the packing of six-membered rings with a 1-D channel. Magnetism measurements demonstrate the presence of strong antiferromagnetic interaction between VIV centers in 1.  相似文献   

14.
A 1-D organic–inorganic hybrid compound, {Cu(en)2}[V2Mo6O26{Cu(en)2}2] · 4H2O [en = ethylenediamine] (1), was hydrothermally synthesized and characterized by IR, UV spectroscopy, TG/DTA analyses, and single crystal X-ray diffraction. The X-ray crystallography analysis reveals an infinitely extended 1-D chain constructed from a molybdovanadate cluster [V2Mo6O26]6? as a building unit, two copper(II) complex fragments, {Cu(en)2}2+, as attached groups and a copper(II) fragment, {Cu(en)2}2+, as a bridging group. Each chain links to adjacent chains through weaker secondary Cu–O interactions forming an interesting 3-D supramolecular architecture.  相似文献   

15.
The geometric parameters of the isomers HN2O+, HPNO+, and HP2O+ were calculated by the nonempirical SCF/3-21G* method and their relative energies were determined with consideration of the electronic correlation in the MP3/DEHD + PS approximation. According to the calculations, protonation of N2O, PNO, and P2O molecules should preferably take place at the oxygen atom. Isomers with a quasilinear NNO and PNO backbone are most advantageous in HN2O+ and HPNO+, and cyclic isomers are 60 and 30 kcal/mole less stable, respectively. On the contrary, the cyclic form is more stable for HPO 2 + (by 10 kcal/mole). The bond at the attacked atom usually weakens (breaks) and the neighboring (opposite) bonds are strengthened in protonation. Protonation of P2O stabilizes the cyclic isomer by 15 kcal/mole more strongly than the "open" isomer, resulting in inversion of their position on the energy scale. In the case of N2O and PNO, the relative position of the cyclic and basic isomers virtually does not change, but the linear NPO isomer is destabliized. The stability of the cyclic isomers in comparison to the "open" isomers increases on substitution of N atoms by P atoms in both molecules of N2O, PNO, and P2O and in their ions HN2O+, HPNO+, and HP2O+. This tendency probably holds in subsequent transition to As and Sb atoms.Institute of New Chemical Problems, Russian Academy of Sciences, 142432 Chernogolovka. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 126–134, January, 1992.  相似文献   

16.
Abstract

In this article, we give a short overview of the theoretical background and properties of the unique polyoxovanadate K6[VIV15As6O42(H2O)]·8H2O (abbreviated V15) containing a cluster of the fifteen VIV ions and exhibiting layers of different magnetizations. Analysis of the magnetic and spectroscopic properties of this fascinating system constitutes a distinct trend in the study of complex nanoscopic polyoxometalates. V15 cluster exhibits strong magnetic anisotropy closely related to the unquenched orbital angular momentum in the degenerate ground state. The degeneracy is interrelated with the spin frustration in V15 which gives rise to a variety of interesting phenomena observed in this polyoxovanadate. We summarize the studies of the isotropic and antisymmetric exchange interaction and analyze its manifestations in magnetic properties, electron paramagnetic resonance, and inelastic neutron scattering spectra as well as in the spin-phonon relaxation in V15. We briefly discuss also a long coherence time (Rabi oscillations) first discovered in molecular magnets due to which the V15 cluster proved to be a prerequisite for the use of molecular magnets in quantum computing.  相似文献   

17.
Two new metastable polyoxovanadate-based cluster compounds have been isolated and crystallographically characterized with nuclearities of {V16} (1) and {V18} (2). The {V16} cluster represents a new framework type and incorporates two protons into the cluster framework whereas the {V18} framework has been previously characterised, and the oxidation states of the {V18} cluster can be assigned as {VIV 15VV 3}. Compound K10[H2V16O38]13H2O (1) crystallizes in the monoclinic space group P21/c, a=12.12820(10), b=38.2302(3), c=12.35400(10) Å, =115.0470(10)°, V=5189.43(7) Å3, D c=2.624 gcm–3. 10086 unique reflection and 702 refined parameters were used in structure refinement. R1=0.039, R2=0.109 (all data). From the same preparation the new compound K11[V18O42(SO4)]20H2O (2) was also isolated and crystallographically characterized. Compound 2 crystallizes in the monoclinic space group P21/n, a=12.7854(3), b=20.2812(5), c=13.2386(4) Å, =115.3400(10)°, V=3102.53(14) Å3, D c=2.650 gcm–3. 7115 unique reflections and 462 refined parameters were used in structure refinement. R1=0.046, R2=0.121 (all data).  相似文献   

18.
A new molybdophosphate (NH4)8{Mo2VO4[(Mo2VIO6)CH3C(O)(PO3)2]2}·14H2O (1), has been synthesized by the reaction of {Mo2VO4(H2O)6}2+ fragments with 1-hydroxyethylidenediphosphonate (hedp HOC(CH3)(PO3H2)2), and it is characterized by 31P NMR, IR, UV, element analysis, TG and single-crystal X-ray analysis. The structure analysis reveals that the polyoxoanion can be described as two {(Mo2VIO6)(CH3C(O)(PO3)2} units connected by a {Mo2VO4}2+ moiety. In the structure, the six Mo atoms are arranged into a new “W-shaped” structure, which represents a new kind of molybdophosphate.  相似文献   

19.
Two di-cadmium-substituted vanadoarsenates, [Cd(enMe)3]2{α-[(enMe)2Cd2As8V12O40(0.5H2O)]}·5.5H2O (1, enMe=1,2-diaminopropane) and [Cd(enMe)2]2{β-[(enMe)2Cd2As8V12O40(0.5H2O)]} (2), were hydrothermally synthesized and characterized by elemental analyses, IR, TGA, UV-Vis, XRD, magnetic measurements and single crystal structural analyses. Crystal data for 1: monoclinic, P2(1)/c, a=15.040(9) Å, b=20.288(12) Å, c=27.873(17) Å, β=98.046(8)°, V=8421.3(19) Å3, Z=4; for 2: monoclinic, P2(1)/n, a=12.753(3) Å, b=19.334(5) Å, c=14.310(3) Å, β=99.984(3)°, V=3475.1(14) Å3, Z=2. X-ray diffraction analyses reveal that compounds 1 and 2 exhibit isolated and one-dimensional inorganic-organic hybrid structures, respectively. The former is the first di-cadmium-substituted vanadoarsenate derived from α-{As8V14O42} shell, while the latter is another kind of di-cadmium-substituted vanadoarsenate derived from β-{As8V14O42} shell. Variable temperature susceptibility measurements demonstrate the presence of antiferromagnetic interactions between VIV cations in 1 and 2.  相似文献   

20.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号