首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
New heteroatom polyoxovanadates (POVs) were synthesized by applying a water‐soluble high‐nuclearity cluster as new synthon. The [V15Sb6O42]6? cluster shell exhibiting D3 symmetry was in situ transformed into completely different cluster shells, namely, the α‐[V14Sb8O42]4? isomer with D2d and the β‐[V14Sb8O42]4? isomer with D2h symmetry. The solvothermal reaction of {Ni(en)3}3[V15Sb6O42(H2O)x] ? 15 H2O (x=0 or 1; en=ethylenediamine) in water led to the crystallization of [{Ni(en)2}2V14Sb8O42] ? 5.5 H2O containing the β‐isomer. The addition of [Ni(phen)3](ClO4)2 ? 0.5 H2O (phen=1,10‐phenanthroline) to the reaction slurry gave the new compound {Ni(phen)3}2[V14Sb8O42] ? phen ? 12 H2O with the α‐isomer. Both transformation reactions are complex due the change of symmetry, the chemical composition, and rearrangement of the VO5 square pyramids and Sb2O5 handle‐like moieties.  相似文献   

2.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

3.
3‐(4‐carboxyphenyl)‐1‐methyltriazene N‐oxide reacts with KOH in methanol/pyridine to give {K[O2C‐C6H4‐N(H)NN(CH3)O]·4H2O}n, Potassium‐3‐(4‐carboxylatophenyl)‐1‐methyltriazene N‐oxide). The terminal carboxylato group of the anion does not interact with the cation. In the crystal lattice of {K(C8H8N3O3)·4H2O}n each three of the four water molecules interact with two potassium cations, every K+ ion being the centre of six bridging K···O interactions. Potassium cations interact further with the terminal N‐oxigen atom of single [C8H8N3O3]? anions achieving two parallel {C8H8N3O3?K+}n chains, which are linked through water molecules. The resulting polymeric, one‐dimensional chain, is operated by a screw axis 21 parallel to the crystallographic direction [010], along and equidistant to the K+ centres. The coordination of the K+ centres involves a distortion of the boat conformation of elementary sulfur (S8) with the ideal C2v symmetry.  相似文献   

4.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

5.
A concise and efficient synthesis of a series of amino‐substituted benzimidazole–pyrimidine hybrids has been developed, starting from the readily available N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. In each of N5‐benzyl‐6‐methoxy‐4‐(2‐phenyl‐1H‐benzo[d]imidazol‐1‐yl)pyrimidine‐2,5‐diamine, C25H22N6O, (I), 6‐methoxy‐N5‐(4‐methoxybenzyl)‐4‐[2‐(4‐methoxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C27H26N6O3, (III), 6‐methoxy‐N5‐(4‐nitrobenzyl)‐4‐[2‐(4‐nitrophenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C25H20N8O5, (IV), the molecules are linked into three‐dimensional framework structures, using different combinations of N—H…N, N—H…O, C—H…O, C—H…N and C—H…π hydrogen bonds in each case. Oxidative cleavage of 6‐methoxy‐N5‐(4‐methylbenzyl)‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, (II), with diiodine gave 6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, which crystallized as a monohydrate, C19H18N6O·H2O, (V), and reaction of (V) with trifluoroacetic acid gave two isomeric products, namely N‐{5‐amino‐6‐methoxy‐6‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐2‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as an ethyl acetate monosolvate, C21H17F3N6O2·C4H8O2, (VI), and N‐{2‐amino‐6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐5‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as a methanol monosolvate, C21H17F3N6O2·CH4O, (VIIa). For each of (V), (VI) and (VIIa), the supramolecular assembly is two‐dimensional, based on different combinations of O—H…N, N—H…O, N—H…N, C—H…O and C—H…π hydrogen bonds in each case. Comparisons are made with some related structures.  相似文献   

6.
Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO‐coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen‐core approximations for Lu were compared: the (1s2–4d10) [Pd] medium core, the [Pd+5s25p6 = Xe] and [Pd+4f14] large cores, and the [Pd+4f14+5s25p6] very large core. The errors of Lu? X bonding are more serious on freezing the 5p6 shell than the 4f14 shell, more serious upon core‐freezing than on the effective‐core‐potential approximation. The Ln? X distances correlate linearly with the AO radii of the ionic outer shells, Ln3+‐5p6 and X?np6, characteristic for dominantly ionic Ln3+‐X? binding. The heavier halogen atoms also bind covalently with the Ln‐5d shell. Scalar relativistic effects contract and destabilize the Lu? X bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re, bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re~BE~kvs). The so‐called degeneracy‐driven covalence, meaning strong mixing of accidentally near‐degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8? (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8? are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7? in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8? reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8? fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

8.
The self‐aggregation tendency of [N(CH3)2(C18H37)2]X [ 1 X; X?=BF4?, PF6?, OTf?, NTf2?, BPh4?, BTol4?, BArF?, and B(C6F5)4?] salts to form ion quadruples (IQs) and higher aggregates (HAggs) in [D6]benzene is investigated by means of diffusion NMR spectroscopy. The experimental results indicate that salts containing small anions ( 1 BF4, 1 PF6, and 1 OTf) are present in solution as IQs even at the lowest investigated concentration of C=5×10?5 M and show a limited tendency to further self‐aggregate, reaching a maximum average aggregation number (N=VH/${V_{\rm{H}}^{{\rm{0IP}}} }$ , where VH=measured hydrodynamic volume and ${V_{\rm{H}}^{{\rm{0IP}}} }$ =hydrodynamic volume of the ion pair) of about 6–8 (C=0.050–0.100 M ). Salts with larger counterions [ 1 BPh4, 1 BTol4, 1 BArF, and 1 B(C6F5)4] form instead ion pairs at low concentration but steadily self‐aggregate (especially the non‐fluorinated ones) on increasing their concentration up to N values exceeding 50 (C=0.030–0.050 M ). 1 NTf2 behaves in an intermediate fashion. The self‐aggregation tendency of salts is quantified by formulating the dependence of VH on C by means of the equations of indefinitive aggregation models. The following rankings for the formation of IQs and HAggs are obtained: IQs: 1 BF4≈ 1 PF6≈ 1 OTf> 1 NTf2> 1 B(C6F5)4≥ 1 BPh4≥ 1 BTol4≥ 1 BArF; HAggs: 1 BTol4> 1 BPh4> 1 NTf2> 1 B(C6F5)4> 1 BArF> 1 BF4≈ 1 PF6≈ 1 OTf. Interionic NOE NMR studies and DFT calculations were conducted in order to determine the relative anion–cation orientation in the self‐aggregating units.  相似文献   

9.
In this study, we explored the feasibility of using electrochemically generated γ‐LixV2O5 as an insertion‐type anode in the lithium‐ion capacitor (LIC) with activated carbon (AC) as a cathode. Along with the native form of V2O5, their carbon composites are also used as the electrode material which is prepared by high‐energy ball milling. The electrochemical pre‐lithiation strategy is used to generate the desired γ‐phase of V2O5 (γ‐LixV2O5). Under the optimized mass loading conditions, the LICs are assembled with γ‐LixV2O5 as anode and AC as a cathode in the organic medium. Among the different LICs fabricated, AC/γ‐LixV2O5‐BM50 configuration delivered an energy density of 33.91 Wh kg?1 @ 0.22 kW kg?1 with excellent capacity retention characteristics. However, a dramatic increase in energy density (43.98 Wh kg?1@0.28 kW kg?1) is noted after the electrolyte modification with fluoroethylene carbonate. The high temperature performance of the assembled LIC is also studied and found that γ‐LixV2O5 phase can be used as a potential battery‐type component to construct high‐performance hybrid charge storage devices.  相似文献   

10.
The 2,8‐di­hydroxy‐1,3,7,9‐tetra­methyl‐6,12‐di­hydro­di­pyrido[1,2‐a:1′,2′‐d]pyrazine­diyl­ium dication possesses 2/m symmetry and lies in the mirror plane together with a chloride anion and the water O atom. The dication also lies on an inversion centre, i.e. C16H20N2O22+·2Cl?·2H2O. Due to these symmetry constrictions the dication adopts an unexpected planar conformation. Molecules are linked by O—H?O and O—H?Cl hydrogen bonds to form chains, which are cross‐connected by C—H?Cl attractive interactions forming a complex three‐dimensional hydrogen‐bond network.  相似文献   

11.
Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O? [Bi≡B?B≡O]? in which both boron atoms can be viewed as sp‐hybridized and the [B?BO]? fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O? and ReB2O? and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O? has a closed‐shell bent structure (Cs, 1A′) with BO? coordinated to an Ir≡B unit, (?OB)Ir≡B, whereas ReB2O? is linear (C∞v, 3Σ?) with an electron‐precise Re≡B triple bond, [Re≡B?B≡O]?. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.  相似文献   

12.
Recrystallization of [MoO2Cl{HC(3,5‐Me2pz)3}]Cl [where HC(3,5‐Me2pz)3 is tris(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane] led to the isolation of large quantities of the dinuclear complex dichlorido‐2κ2Cl‐μ‐oxido‐κ2O:O‐tetraoxido‐1κ2O,2κ2O‐[tris(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐1κN2)methane]dimolybdenum(IV) acetonitrile monosolvate, [Mo2Cl2O4(C16H22N6)]·CH3CN or [{MoO2Cl2}(μ2‐O){MoO2[HC(3,5‐Me2pz)3]}]·CH3CN. At 150 K, this complex cocrystallizes in the orthorhombic space group Pbcm with an acetonitrile molecule. The complex has mirror symmetry: only half of the complex constitutes the asymmetric unit and all the heavy elements (namely Mo and Cl) are located on the mirror plane. The acetonitrile molecule also lies on a mirror plane. The two crystallographically independent Mo6+ centres have drastically different coordination environments: while one Mo atom is hexacoordinated and chelated to HC(3,5‐Me2pz)3 (which occupies one face of the octahedron), the other Mo atom is instead pentacoordinated, having two chloride anions in the apical positions of the distorted trigonal bipyramid. This latter coordination mode of MoVI was found to be unprecedented. Individual complexes and solvent molecules are close‐packed in the solid state, mediated by various supramolecular contacts.  相似文献   

13.
Synthesis and Crystal Structure of the Fluoride ino‐Oxosilicate Cs2YFSi4O10 The novel fluoride oxosilicate Cs2YFSi4O10 could be synthesized by the reaction of Y2O3, YF3 and SiO2 in the stoichiometric ratio 2 : 5 : 3 with an excess of CsF as fluxing agent in gastight sealed platinum ampoules within seventeen days at 700 °C. Single crystals of Cs2YFSi4O10 appear as colourless, transparent and water‐resistant needles. The characteristic building unit of Cs2YFSi4O10 (orthorhombic, Pnma (no. 62), a = 2239.75(9), b = 884.52(4), c = 1198.61(5) pm; Z = 8) comprises infinite tubular chains of vertex‐condensed [SiO4]4? tetrahedra along [010] consisting of eight‐membered half‐open cube shaped silicate cages. The four crystallographically different Si4+ cations all reside in general sites 8d with Si–O distances from 157 to 165 pm. Because of the rigid structure of this oxosilicate chain the bridging Si–O–Si angles vary extremely between 128 and 167°. The crystallographically unique Y3+ cation (in general site 8d as well) is surrounded by four O2? and two F? anions (d(Y–O) = 221–225 pm, d(Y–F) = 222 pm). These slightly distorted trans‐[YO4F2]7? octahedra are linked via both apical F? anions by vertex‐sharing to infinite chains along [010] (?(Y–F–Y) = 169°, ?(F–Y–F) = 177°). Each of these chains connects via terminal O2? anions to three neighbouring oxosilicate chains to build up a corner‐shared, three‐dimensional framework. The resulting hexagonal and octagonal channels along [010] are occupied by the four crystallographically different Cs+ cations being ten‐, twelve‐, thirteen‐ and fourteenfold coordinated by O2? and F? anions (viz.[(Cs1)O10]19?, [(Cs2)O10F2]21?, [(Cs3)O12F]24?, and [(Cs4)O12F2]25? with d(Cs–O) = 309–390 pm and d(Cs–F) = 360–371 pm, respectively).  相似文献   

14.
The synthesis of coordination polymers or metal–organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one‐dimensional coordination polymer, catena‐poly[[[bis{1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κN3}zinc(II)]‐μ‐hexane‐1,6‐dicarboxylato‐κ4O1,O1′:O6,O6′] monohydrate], {[Zn(C6H8O4)(C9H8N6)2]·H2O}n, has been synthesized by the reaction of Zn(Ac)2 (Ac is acetate) with 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) and adipic acid (H2adi) at room temperature. In the polymer, each ZnII ion exhibits an irregular octahedral ZnN2O4 coordination geometry and is coordinated by two N atoms from two symmetry‐related bimt ligands and four O atoms from two symmetry‐related dianionic adipate ligands. ZnII ions are connected by adipate ligands into a one‐dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the ZnII ions in a monodentate mode on both sides of the main chain. In the crystal, the one‐dimensional chains are further connected through N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.  相似文献   

15.
There are two symmetry‐independent formula units of the title compound, C6H15N4O2+·F?·HF, per cell. Both cations have a zwitterionic form, protonated at both the guanidyl and amino groups. The two symmetry‐independent cations differ in their conformation. In one of them the Cγ atom is in a gauche position to both the amino and carboxyl groups, while in the other this atom is trans to the amino group. The two anions have very similar geometry. The F? ions are strongly hydrogen bonded to an HF molecule [F—H?F 2.233 (2) and 2.248 (3) Å], thereby forming an asymmetric non‐linear bifluoride anion. These F?F distances are the shortest reported for an asymmetric HF2? anion.  相似文献   

16.
The bitopic ligand 1,2‐bis(1,2,4‐triazol‐4‐yl)ethane (tr2eth) provides an unprecedented short‐distance N1:N2‐triazole bridging of CuI and VIV ions in poly[bis[μ4‐1,2‐bis(1,2,4‐triazol‐4‐yl)ethane]di‐μ2‐fluorido‐tetrafluoridodi‐μ2‐oxido‐dicopper(I)divanadium(IV)], [Cu2V2F6O2(C6H8N6)2]n. The CuI ions and tr2eth linkers afford a two‐dimensional square‐grid topology involving centrosymmetric (tr)Cu(μ‐tr)2Cu(tr) [tr is triazole; Cu—N = 1.9525 (16)–2.0768 (18) Å] binuclear net nodes, which are expanded in a third dimension by centrosymmetric [V2O2F6]2− pillars. The concerted μ‐tr and μ‐O bridging between the CuI and VIV ions allows a multi‐centre accommodation of the vanadium oxyfluoride moiety on a cationic Cu/tr2eth matrix [Cu—O = 2.1979 (15) Å and V—N = 2.1929 (17) Å]. The distorted octahedral coordination of [VONF4] is completed by two terminal and two bridging F ions [V—F = 1.8874 (14)–1.8928 (13) and 2.0017 (13)–2.1192 (12) Å, respectively]. The resulting three‐dimensional framework has a primitive cubic net topology and adopts a threefold interpenetration.  相似文献   

17.
Five mixed‐metal mixed‐valence Mo/V polyoxoanions, templated by the pyramidal SeO32? heteroanion have been isolated: K10[MoVI12VV10O58(SeO3)8]?18 H2O ( 1 ), K7[MoVI11VV5VIV2O52(SeO3)]?31 H2O ( 2 ), (NH4)7K3[MoVI11VV5VIV2O52(SeO3)(MoV6VV‐ O22)]?40 H2O ( 3 ), (NH4)19K3[MoVI20VV12VIV4O99(SeO3)10]?36 H2O ( 4 ) and [Na3(H2O)5{Mo18?xVxO52(SeO3)} {Mo9?yVyO24(SeO3)4}] ( 5 ). All five compounds were characterised by single‐crystal X‐ray structure analysis, TGA, UV/Vis and FT‐IR spectroscopy, redox titrations, and elemental and flame atomic absorption spectroscopy (FAAS) analysis. X‐ray studies revealed two novel coordination modes for the selenite anion in compounds 1 and 4 showing η,μ and μ,μ coordination motifs. Compounds 1 and 2 were characterised in solution by using high‐resolution ESI‐MS. The ESI‐MS spectra of these compounds revealed characteristic patterns showing distribution envelopes corresponding to 2? and 3? anionic charge states. Also, the isolation of these compounds shows that it may be possible to direct the self‐assembly process of the mixed‐metal systems by controlling the interplay between the cation “shrink‐wrapping” effect, the non‐conventional geometry of the selenite anion and fine adjustment of the experimental variables. Also a detailed IR spectroscopic analysis unveiled a simple way to identify the type of coordination mode of the selenite anions present in POM‐based architectures.  相似文献   

18.
A 2 : 4 mixture of tetrakis[4‐(4‐pyridyl)phenyl]cavitand ( 1 ) or tetrakis[4‐(4‐pyridyl)phenylethynyl]cavitand ( 2 ) and Pd(dppp)(OTf)2 self‐assembles into a homocapsule { 1 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C1 ) or { 2 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C2 ), respectively, through Pd?Npy coordination bonds. A 1 : 1 : 4 mixture of 1 , 2 , and Pd(dppp)(OTf)2 produced a mixture of homocapsules C1 , C2 , and a heterocapsule { 1 ? 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C3 ) in a 1 : 1 : 0.98 mole ratio. Selective formation (self‐sorting) of homocapsules C1 and C2 or heterocapsule C3 was controlled by guest‐induced encapsulation under thermodynamic control. Applications of Pd?Npy coordination capsules with the use of 1 were demonstrated. Capsule C1 serves as a guard nanocontainer for trans‐4,4′‐diacetoxyazobenzene to protect against the trans‐to‐cis photoisomerization by encapsulation. A chiral capsule { 1 2 ? [Pd((R)‐BINAP)]4}8+ ? (TfO?)8 ( C5 ) was also constructed. Capsule C5 induces supramolecular chirality with respect to prochiral 2,2′‐bis(alkoxycarbonyl)‐4,4′‐bis(1‐propynyl)biphenyls by diastereomeric encapsulation through the asymmetric suppression of rotation around the axis of the prochiral biphenyl moiety.  相似文献   

19.
The adsorption behaviour of the CdII–MOF {[Cd(L)2(ClO4)2]·H2O ( 1 ), where L is 4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole, for butan‐2‐one was investigated in a single‐crystal‐to‐single‐crystal (SCSC) fashion. A new host–guest system that encapsulated butan‐2‐one molecules, namely poly[[bis{μ3‐4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole}cadmium(II)] bis(perchlorate) butanone sesquisolvate], {[Cd(C24H18N6)2](ClO4)2·1.5C4H8O}n, denoted C4H8O@Cd‐MOF ( 2 ), was obtained via an SCSC transformation. MOF 2 crystallizes in the tetragonal space group P43212. The specific binding sites for butan‐2‐one in the host were determined by single‐crystal X‐ray diffraction studies. N—H…O and C—H…O hydrogen‐bonding interactions and C—H…π interactions between the framework, ClO4? anions and guest molecules co‐operatively bind 1.5 butan‐2‐one molecules within the channels. The adsorption behaviour was further evidenced by 1H NMR, IR, TGA and powder X‐ray diffraction experiments, which are consistent with the single‐crystal X‐ray analysis. A 1H NMR experiment demonstrates that the supramolecular interactions between the framework, ClO4? anions and guest molecules in MOF 2 lead to a high butan‐2‐one uptake in the channel.  相似文献   

20.
To investigate the influence of the non‐covalent interactions, such as hydrogen‐bonding, π–π packing and d10–d10 interactions in the supramolecular motifs, three cyanido‐bridged heterobimetallic discrete complexes {Mn(bipy)2(H2O)[Ag(CN)2]}[Ag(CN)2] ( 1 ), {Mn(phen)2(H2O)[Au(CN)2]}2[Au(CN)2]2 · 4H2O ( 2 ), and {Cd(bipy)2(H2O)[Au(CN)2]}[Au(CN)2] ( 3 ) (bipy = 2,2′‐bipyridine, and phen = 1,10‐phenanthroline), which are based on dicyanidometallate(I) groups with 1:2 stoichiometry of metal ions and 2,2′‐bipyridyl‐like co‐ligands were synthesized and structurally characterized. In compound 1 , hydrogen bonding and π–π interactions governed the supramolecular contacts. In compound 2 , the incorporation of aurophilic, hydrogen bonding and π–π interactions result in a 3D supramolecular network. In compound 3 , hydrogen bonding and π–π stacking interactions result in a 2D supramolecular layer. In the three complexes, hydrogen‐bonding, π–π packing and/or d10–d10 interactions can play important roles in increasing the dimensionality of supramolecular assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号