首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary: The crystallization behavior of nylon‐6 and nylon‐6/montmorillonite nanocomposite films with different heat histories was investigated by wide‐angle X‐ray diffraction (WAXD). For nylon‐6 films isothermally crystallized above 170 °C or annealed at 200 °C and then quenched in ice water, a crystalline peak appeared at 2θ = 28.5°. This crystalline peak was strong in intensity for the former and weak for the latter. However, for nylon‐6 films cooled in air after isothermal crystallization or annealing, no crystalline peak at 2θ = 28.5° was observed in the WAXD patterns. For nylon‐6/montmorillonite nanocomposite films annealed above 140 °C, a crystalline double peak was observed between the α1 and α2 peaks. The possible origins of the peak at 2θ = 28.5° and the crystalline double peak are discussed.

WAXD patterns of isothermally crystallized nylon‐6/montmorillonite nanocomposite films.  相似文献   


2.
Co‐polyimide (co‐PI) fibers with outstanding mechanical properties were fabricated via thermal imidization of polyamic acids, derived from a new design of combining the amide and benzimidazole diamine monomers, 4‐amino‐N‐(4‐aminophenyl)benzamide (DABA) and 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (BIA), with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA). The crystalline structure and micromorphology of the prepared co‐PI fibers were investigated by synchrotron wide‐angle X‐ray diffraction (WAXD) and small‐angle X‐ray scattering (SAXS). The two‐dimensional WAXD spectra imply that the co‐PI fibers possess a structure between smectic‐like and three‐dimensionally ordered crystalline phase, and all the obtained fibers are highly oriented along the fiber axis. SAXS patterns exhibit a pair of meridional scattering streaks for the homo‐PI (BPDA/BIA) fiber, suggesting the presence of periodic lamellar structure. The incorporation of DABA into the polymer chains destroyed the lamellar structure but led to smaller size of microvoids upon increasing DABA moiety, based on SAXS analysis. The co‐PI fibers, with the molar ratio of BIA/DABA being 7/3, exhibited the optimum tensile strength and modulus of 1.96 and 108.3 GPa, respectively, attributed to the well‐defined ordered and dense structure. The chemical structure and molecular packing significantly affected the thermal stability of fibers, resulting in the different glass transition temperatures (Tg) from 350 to 380 °C. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 183–191  相似文献   

3.
Cellulose and periodate oxidised cellulose powders were investigated for any structural changes occurring when subjected to thermal treatment, since their use as fillers in composites involves prolonged exposure to high temperatures. The wide-angle X-ray diffraction peak at 2θ = 22·9° for the oxidised cellulose samples was found to decrease almost proportionately to the degree of oxidation of the starting cellulose. Whereas heat treatment of cellulose powder at 120°, 180° and 240°C for three hours also produces a continual decrease in the crystallinity of the cellulose, heat treatment of periodate oxidised cellulose at 120°, 180° and 240°C for three hours produces drastic changes in the crystallinity of the resultant products. For 16% oxidised cellulose heated at 240°C for three hours, almost total crystallinity is lost. This is also seen from the increase in line broadening of the X-ray diffractogram. An interesting feature in the above cases was the appearance of an additional peak at 2θ ≈ 12°. In DTG studies the temperature at which the major loss in weight (~ 62%) occurred was ~ 290°C for most samples. The final weight loss (~ 85%) generally occurred at 430–450°C. The 16% oxidised cellulose behaved somewhat differently, and reasons for this are explained.  相似文献   

4.
A series of thermotropic liquid crystalline polyurethanes (LCPUs) were synthesized by the polyaddition reactions of 2,4‐toluene diisocyanate (2,4‐TDI) with 4,4′‐bis(6‐hydroxyhexoxy)biphenyl (BHHBP) and aliphatic diol. The intrinsic viscosities of the polymers were measured by Ubbelohde viscometer, and the chemical structure was confirmed by Fourier transform infrared spectroscopy (FT‐IR). The LCPUs were examined by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA). The intrinsic viscosities were 0.56–0.83 dl/g. According to the melting point (Tm) and the isotropic temperature (Ti) of the LCPUs, the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyurethane. The LCPUs exhibited a nematic phase with a threaded texture and had a wide mesophase temperature range. The decomposition temperature of the LCPUs was >300°C. On WAXD, the LCPUs give a dispersing peak at 2θ ≈ 20°, and a strong diffraction peak at 2θ ≈ 25°. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Small angle X‐ray scattering (SAXS) and wide angle X‐ray diffraction (WAXD) were adopted to investigate the formation and development of high order structure within polyacrylonitrile (PAN) precursor during coagulation. The scattering signal came from the microvoids and long period structure was separated reasonably by the analog computation method of decomposition of the one‐dimensional profile. Based on the established methodology, the statistic parameters of long period structure, such as length of the long period structure, crystalline region and amorphous region, were obtained by the analysis of correlation function. The results indicated that during the coagulation, the length of long period of the nascent coagulated fiber was 56.1 nm (meridional direction) and 35.6 nm (equatorial direction), respectively. The evolution of the long period during the coagulation was also discussed by combining WAXD data. With the processing of coagulation, the long period was decreased since the crystallinity increased. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, PAN fibers web was fabricated by Electrospinning, and then was pre-oxidated. Effect of the temperature on the structure and property of pre-oxidation web was discussed. The results showed that better level of pre-oxidation nanofibers web can be obtained when the pre-oxidation temperature is 250 °C. At this temperature, Infrared Spectroscopy showed that cyclization and dehydrogenation reaction have occurred and DSC curves showed that cyclization was basically complete, as well as moisture content can be appropriately controlled. Moreover, the preoxidated web with better breaking strength, elongation at break, and the initial modulus could be obtained.  相似文献   

7.
The influence of annealing on the microstructure and mechanical properties of β-form isotactic polypropylene (iPP) was investigated via in situ synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Transition of β-iPP to α-iPP was investigated via recrystallization at high annealing temperatures (T a?>?120 °C). And crystallinity, crystal sizes, and long period of ordered structure increased with increasing annealing temperature. Abrupt changes were found in both mechanical properties and structural features at the same T a range (~120 °C). The in situ synchrotron SAXS and WAXD shows that the destruction of b phase at yielding and after yielding should account for the ductility of β-iPP. The thermodynamics and kinetics of annealing were investigated with DSC and X-ray synchrotron experiments. A characteristic annealing time was investigated, which measures the rate of phase evolution in annealing of β-iPP. Eventually, a hypothesized model can be used to describe the property/structure relations during this process.  相似文献   

8.
No systematic study has been reported on the lamellar thickening in atactic poly(acrylonitrile) (PAN) upon annealing because PAN, in the form of solution‐cast films or their drawn products, generally shows no small‐angle X‐ray scattering (SAXS) maximum corresponding to the lamellar thickness. In this work, PAN crystals were precipitated during the thermal polymerization of acrylonitrile in solution. The nascent PAN film, obtained by the filtration of the crystal suspension, exhibited a clear SAXS maximum revealing the lamellar structure. The lamellar thickening upon annealing of the nascent PAN films was studied in the temperature range 100–180 °C, where the degradation was minimal, as confirmed by the absence of an IR absorption band at 1605 cm−1 ascribed to the cyclized nitrile groups. Above 190 °C, the degradation of the samples was significant, and the SAXS became too broad to determine the scattering maximum. The long period was significantly affected by the annealing time (ta) and the temperature (Ta). Depending on ta, three stages were observed for the lamellar thickening behavior. The lamellar thickness stayed constant in stage I (ta = 0.5–3 min, depending on Ta), rapidly increased in stage II (ta = 0.5–8 min), and stayed at a constant value characteristic for each Ta at yet longer ta's in stage III. The lamellar thickness characteristic for Ta increased rapidly with increasing Ta at 165 °C (or higher), which was 152 °C lower than the estimated melting temperature of PAN (Tm = 317 °C). A possible mechanism for such lamellar thickening in PAN far below the Tm is discussed on the basis of the enhanced chain mobility in the crystalline phase above the crystal/crystal reversible transition at 165–170 °C detected by differential scanning calorimetry and wide‐angle X‐ray diffraction. The structural changes associated with annealing are also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2571–2579, 2000  相似文献   

9.
Composite nanofibers with 5% w/w multiwalled carbon nanotubes (MWCNTs) in polyacrylonitrile (PAN) were fabricated using the electrospinning technique. Morphological development during the carbonization process was characterized by transmission electron microscopy (TEM) with in situ heating. It was found that the orientation of graphitic layers increases with temperature and does not change significantly with time during our TEM measurement, except the 750 °C. In the heating stage at 750 °C noticeable enhancement of orientation with time was observed. The presence of embedded CNTs enhances the order of the formed graphitic structures even when the CNTs are irregular or entangled. The results indicate that embedded MWCNTs in the PAN nanofibers nucleate the growth of carbon crystals during PAN carbonization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
A novel method for the separation of polyacrylonitrile (PAN) fibrils from fibers by ultrasonic etching in a 90 wt % aqueous dimethylsulphoxide (DMSO) solution at 75 °C ± 2 °C for 6 h with a frequency of 40 kHz is demonstrated. These fibrils with a diameter of about 450 nm were systematically investigated by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and wide‐angle X‐ray diffraction (WAXD). It was found that the fibrils consisted of microfibrils with about 200 nm diameter, including periodic lamellae with thickness of 30–45 nm perpendicular to the fiber axis. The PAN fiber crystallinity and crystal size slightly decreased under the ultrasonic etching. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 617–619, 2010  相似文献   

11.
高锋  赵江 《高等学校化学学报》2011,32(12):2711-2713
本文报道用同步辐射二维小角X射线散射(2D\|SAXS)研究预氧化过程中张力对PAN纤维缺陷的影响.  相似文献   

12.
The crystallization behavior of isotactic propylene‐1‐hexene (PH) random copolymer having 5.7% mole fraction of hexene content was investigated using simultaneous time‐resolved small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For this copolymer, the hexene component cannot be incorporated into the unit cell structure of isotactic polypropylene (iPP). Only α‐phase crystal form of iPP was observed when samples were melt crystallized at temperatures of 40 °C, 60 °C, 80 °C, and 100 °C. Comprehensive analysis of SAXS and WAXD profiles indicated that the crystalline morphology is correlated with crystallization temperature. At high temperatures (e.g., 100 °C) the dominant morphology is the lamellar structure; while at low temperatures (e.g., 40 °C) only highly disordered small crystal blocks can be formed. These morphologies are kinetically controlled. Under a small degree of supercooling (the corresponding iPP crystallization rate is slow), a segmental segregation between iPP and hexene components probably takes place, leading to the formation of iPP lamellar crystals with a higher degree of order. In contrast, under a large degree of supercooling (the corresponding iPP crystallization rate is fast), defective small crystal blocks are favored due to the large thermodynamic driving force and low chain mobility. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 26–32, 2010  相似文献   

13.
Electrospun nylon-6 fibers were prepared from its polyelectrolyte solution in formic acid with different concentrtaions. In situ Fourier transform infrared (FTIR), wide-angle X-ray diffraction and small-angle X-ray scattering (SAXS) were performed on the nylon-6 fibers heated to various temperatures until melting. For comparison, stepwise annealing of the solution-cast film having exclusively the α-form was also carried out to elucidate the structural evolution. Our results showed that Brill transition in the electrospun fibers occurs at a lower temperature than that in the solution-cast film due to the crystal size difference. Differential scanning calorimetry heating traces on the as-spun fibers exhibited a unique crystalline phase with a melting temperature of ~235?°C, higher than the equilibrium melting temperature of nylon-6. The content of high melting temperature (HMT) phase increased with increasing nylon-6 concentration; a maximum of 30?% of the fiber crystallinity was reached for fibers obtained from the 22?wt.% solution regardless of the heating rates used. Based on the SAXS and FTIR results, we speculated that the HMT phase is associated with thick α-form crystals developed from the highly oriented nylon-6 chains that are preserved in the skin layer of the as-spun fibers. A plausible mechanism for the formation of the skin/core fiber morphology during electrospinning was proposed.  相似文献   

14.
徐坚  刘瑞刚 《高分子科学》2017,35(6):764-772
The microcrystalline structure and microvoid structure in carbon fibers during graphitization process(2300-2700 °C) were characterized employing laser micro-Raman scattering(Raman), X-ray diffraction(XRD), small angle X-ray scattering(SAXS), and high-resolution transmission electron microscopy(HR-TEM). The crystalline sizes(L_a, L_c) increased and interlayer spacing(d_(002)) decreased with increasing heat treatment temperature(HTT). The microvoids in the fibers grew up and contacted to the neighbors with the development of microcrystalline. In addition, the preferred orientation of graphite crystallite along fiber axis decreased and microvoids increased. The results are crucial for analyzing the evolution of microstructure of carbon fibers in the process of heat treatment and important for the preparation of high strength and high modulus carbon fibers.  相似文献   

15.
Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at ?2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.  相似文献   

16.
Temperature-reversible and -irreversible morphological events could be separated in the case of linear polyethylene during quasi-isothermal crystallization by using simultaneous temperature-modulated synchrotron SAXS and WAXD. Crystallization and subsequent annealing was followed at 126 °C for 90 min while applying a temperature modulation with an amplitude of 1 °C and a period of 2 min. The crystal growth rate associated with the irreversible part of the crystallization decreases with increasing temperature in a cycle. The crystalline lamellae irreversibly thicken with time. The actual crystallite thickness, however, exhibits a superimposed modulation out of phase with that of the temperature modulation. Melting was studied during heating at 1 °C/min after cooling at 10 °C/min. A temperature modulation was superimposed with an amplitude of 2 °C and a period of 3 min. Once again temperature-reversible crystal thickness changes and irreversible crystal thickening could be observed.  相似文献   

17.
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), and iPP/sPP blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) with synchrotron radiation. The sPP melting point is 15–20 °C below that of the iPP component, and sPP multiple melting is not affected by blending for 50–100 wt % sPP compositions. SAXS and WAXD (at 115 and 137.5 °C) show that sPP crystallizes more slowly than iPP. The sPP long spacing is larger than that of iPP at both crystallization temperatures, exhibits a broader distribution, and changes to a greater extent during crystallization. Differential scanning calorimetry (DSC) cooling and SAXS/WAXD measurements show iPP crystallizing first and nearly to completion before sPP in a 50:50 iPP/sPP blend. At 115 °C, iPP crystals nucleate sPP in a 50:50 blend and modify the sPP lamellar spacing. The nucleation does not overcome the large difference in the iPP and sPP rates at 137.5 °C. Before sPP crystallization in a 50:50 blend (115 °C), the iPP long spacing is not affected by molten sPP. The iPP long spacing is slightly expanded by molten sPP, and the WAXD induction time is delayed at 137.5 °C. The observed iPP long spacing in the presence of molten sPP is consistent with previously reported results for iPP/atactic polypropylene (aPP) blends of similar molecular weight. Quantitative differences between the two types of blends are consistent with previously reported thermodynamic rankings. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1876–1888, 2001  相似文献   

18.
The thermodynamics of polyacrylonitrile (PAN) terpolymer/dimethyl sulphoxide (DMSO)/water system was investigated by viscometric method. Fourier transform infrared (FTIR) measurement of the temperature dependence of polymer/solvent interaction was performed in the range of 25–80 °C, which was in good agreement with viscometric results. Meanwhile, the upper critical solution temperature (UCST) for PAN terpolymer/DMSO/water system, which is proved to be stable one, was determined from the temperature dependence of the expansion factor αη 3 . The morphology of PAN precursor prepared by dry‐jet‐wet spinning with different fiber‐forming conditions was examined with a scanning electron microscope (SEM). Judging from SEM photographs, not only the number and size of microvoids of PAN precursor gradually increase, with increasing the temperature of coagulation bath, but also the cross‐section shape of PAN precursor changes from nephroid shape to elliptical shape or circular shape. Therefore, PAN precursor with different microstructures can be fabricated at different quenching‐depths, suggesting that the final microstructure of the PAN precursor greatly depends on the phase separation in the fiber‐forming process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1997–2011, 2008  相似文献   

19.
Summary: Cellulose was dissolved rapidly in 9.5 wt.‐% NaOH and 4.5 wt.‐% thiourea aqueous solution pre‐cooled to −5 °C to prepare a transparent solution. Novel cellulose multi‐filament fibers were spun successfully, for the first time, from the cellulose dope on an extended laboratory scale. The results from 13C NMR, scanning electron microscopy and wide angle X‐ray diffraction (WAXD) patterns indicated that the fibers exhibited cellulose II character and possessed a circular cross‐section and smooth surface. The tensile strength of the novel fibers reached 1.9–2.2 cN · dtex−1. 2D WAXD and SAXS patterns revealed that, with a drawing progress, the orientation factor increased and mechanical properties were improved.

SEM micrographs of the novel multi‐filament fibers spun from cellulose solution in a NaOH/thiourea aqueous system pre‐cooled to −5 °C on an extended laboratory scale.  相似文献   


20.
As part of a study of chemical and physical changes accompanying the formation of carbons by the pyrolysis of polymers, conventional electron microscopy, electron diffraction, and scanning electron microscopy techniques have been used to examine structural and morphological features of polyacrylonitrile (PAN) crystals, powder, and fibers, and of Saran and poly(vinylidene chloride) (PVDC) powder. Changes accompanying the heating of these polymers in air and in nitrogen have been investigated. PAN crystals grown from propylene carbonate were similar to those obtained by Klement and Geil. When heated in air at 220°C they retained their morphology, and electron diffraction gave the same reflections as PAN. On further heating to 400°C in nitrogen the morphology was retained, but the diffraction was lost. Crystals treated in nitrogen alone at 200°C showed morphology similar to that of the polymer. PAN powders and fibers retained discernable external features of their morphology on heating to 800°C. These results are discussed with reference to changes which take place when poly(vinylidene chloride) and Saran are heated in the range 150–180°C, which results in the loss of one hydrogen chloride per monomer unit, and are subsequently carbonized at 800°C. The development of pore structure and the adsorptive properties of Saran carbons are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号