首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since graphene-based materials have shown great potential in many fields,it is important to explore ultrafast and high-efficient methods to synthesize reduced graphene oxide(rGO) using inexpensive reducing agents under mild conditions.Here,we reported a novel method for the ultrafast chemical reduction of graphene oxide(GO) at room temperature using sodium borohydride(NaBH4),sodium molybdate(Na2MoO4) and hydrochloric acid(HCl).The reduction was carried out within 2 min.A series of characterization results revealed that the obtained reduced graphene oxide has higher reduction degree than that synthesized by NaBH4 alone at high temperature.Moreover,rGO electrode based on the present reducing method exhibited a superior specific capacitance of 139.8 F/g at a current density of1 A/g,indicating that it can be used as electrode materials for supercapacitors.  相似文献   

2.
Core‐shell carbon‐coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high‐power lithium‐ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon‐coated LiFePO4‐rGO (LFP/C‐rGO) hybrids were ascribed to three factors: 1) In‐situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4, 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C‐rGO hybrids with LFP/C‐rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li+ ion and electron transport for high power applications.  相似文献   

3.
The concise synthesis of sulfur‐enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur‐enriched‐reduced GO (S‐rGO). Various techniques, such as X‐ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S‐rGO with polyoxometalate (POM) as a cathode‐active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S‐rGO surface. This battery, based on a POM/S‐rGO complex, exhibited greater cycling stability for the charge‐discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur‐containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.  相似文献   

4.
Journal of Solid State Electrochemistry - In this study, graphene oxide (GO) was chemically reacted with sodium borohydride (NaBH4) to form reduced graphene oxide (rGO). rGO and rGO/Zn...  相似文献   

5.
以四水合氯化亚铁和硝酸银为原料,硼氢化钠为还原剂,氧化石墨烯(GO)为载体,通过原位还原法制备了具有磁分离功能的银/四氧化三铁/还原氧化石墨烯(Ag/Fe_3O_4/rGO)纳米复合抗菌材料.采用X射线粉末衍射仪(XRD)、X射线光电子能谱仪(XPS)、透射电子显微镜(TEM)等对复合材料进行了表征.结果显示,Fe_3O_4和Ag纳米颗粒均匀分布在rGO片层上.复合材料的饱和磁化率(Ms)为40.5 A·m~2·kg·(-1),表明其具有较强的磁性,将其与菌液混合后,在磁场作用下10 min即可吸附沉降完成磁分离.以大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)为实验菌株,通过琼脂扩散法评价了复合材料的抗菌性能.结果表明,该复合材料具有良好的抗菌效果,对E.coli和S.aureus的抑菌圈直径分别为18 mm和13 mm,最低抑菌浓度值(MIC)分别为50 mg/L和80 mg/L,最低杀菌浓度值(MBC)分别为30 mg/L和50 mg/L.  相似文献   

6.
Herein, we report the synthesis of a graphene/polymer composite via a facile and straightforward approach for electromagnetic interference (EMI) shielding applications. Polystyrene (PS) beads were added in graphene oxide (GO)/water solution followed by the addition of hydroiodic acid (HI) for in situ reduction of GO. The composite solution (rGO/PS) was filtered, hot compressed and tested for EMI shielding and dielectric measurements. A 2-mm thick segregated rGO/PS sample with 10 wt% filler loading delivered a high EMI shielding effectiveness (SE) of 29.7 dB and an AC electrical conductivity of 21.8 S m?1, which is well above the commercial requirement for EMI shielding applications. For comparison with the segregated rGO/PS composite, a control polymer composite sample utilizing a thermally reduced graphene oxide was synthesized by following a conventional coagulation approach. The as-synthesized conventional rGO/PS yield an EMI SE of 14.2 dB and electrical conductivity of 12.5 S m?1. The high EMI shielding of segregated rGO/PS is attributed to the better filler-to-filler contact among graphene layers surrounded by PS beads and also to the better reduction and preservation of graphene structure during reduction process that makes the low temperature chemically reduced segregated rGO/PS approach a viable route compared to high temperature thermally reduced conventional rGO/PS approach.  相似文献   

7.
An improved Hummers method was developed for the simple and efficient production of high-quality graphene oxide(GO), and the composite of GO and nickel foam(NF)(GO/NF) was fabricated by ultrasonication-vacuum-assisted deposition of an aqueous solution of GO on NF. After chemical or thermal reduction, the composite of reduced GO and nickel foam(r GO/NF) was obtained. The electrochemical capacitance performance of r GO/NF was investigated using cyclic voltammetry and galvanostatic charge/discharge measurements. The chemically reduced r GO/NF composite(C-r GO/NF) exhibited high specific capacitance of 379 F/g at 1.0 A/g and 266.5 F/g at 10 A/g. We also prepared thermally reduced graphene oxide at 473 K in order to illuminate the difference in effect between the chemical and low-temperature thermal reduction methods on electrochemical properties. The cycling performance of thermally reduced r GO/NF composite(T-r GO/NF) and C-r GO/NF had ~91% and ~95% capacitance retention after 2000 cycles in a 6 mol/L KOH electrolyte, respectively. Electrochemical experiments indicated that the obtained r GO/NF has very good capacitive performance and could be used as a potential application of electrochemical capacitors. Our work revealed high electrochemical capacitor performance of r GO/NF composite and provided a facile method of r GO/NF preparation.  相似文献   

8.
The enhancement of photocatalytic activity of TiO2 can be made either by promoting absorption efficiency of photon energy or by reducing recombination losses of photogenerated charge carriers, for which fabrication of nanocomposite structure with carbon materials is an optional selection. Among various nanocarbons, graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) are more favorable as the counterpart materials because they can provide availability of both obverse and reverse surface, thus doubling effective sites for adsorption, loading of nanoparticles, and interfacial interaction with the loaded nanoparticles. Composition of G/GO with titania, therefore, is a hopeful strategy for achieving synergy or cooperative effect in photocatalysis. In this personal account, we focus on the background and methodology of several soft chemical approaches that we have utilized up to date to fabricate nanocomposites of G/GO and titania, aiming to shed light on the importance of designing of nanocomposite structure for enhancing photocatalysis. In addition, we emphasize the role of interfacial interaction between carbon and titania by exemplifying a hybridized photocatalyst based on inexpensive biomass‐derived carbon sphere (CS), and demonstrate that it is a crucial influential factor underlying an enhanced visible light photocatalysis. CS can be a better selection as a counterpart component than G/GO, whose core‐shell composing structure with titania (TiO2@CS) can efficiently induce charge transfer so as to achieve a much higher photocatalytic performance under visible light illumination as compared to the composite of rGO and titania.  相似文献   

9.
Three-dimensional silver/graphene/polymer hybrid microspheres were prepared to depress the aggregation of two-dimensional graphene. Graphene oxide (GO) sheets were successfully wrapped on the surface of amine-functionalized polystyrene-poly (glycidyl methacrylate) (PS-PGMA) microspheres (~3 μm in diameter) to form graphene oxide/amino-microsphere (GO/AMS) core–shell structure. Subsequently, the wrapped GO sheets were reduced by using hydrazine hydrate as the reducing agents, meanwhile decorated with silver nanoparticles on the wrinkled surface to form Ag-rGO/AMS hybrid microspheres with monodisperse distributions in shape and diameter. The resulting materials were characterized by power X-ray diffraction, scanning electron microscope, Raman spectra, and ultraviolet–visible (UV–vis) absorption spectra. Since Ag nanoparticles behave surface plasmon resonance effect and rGO structure can improve the separation of photogenerated electrons and holes, the Ag-rGO/AMS composites present good photocatalytic activities for the degradation of methylene blue (MB) as 93 % MB were degraded after 2.5 h under irradiation.  相似文献   

10.
In this paper, we report the green synthesis of 1-(4-ferrocenylbutyl)piperazine chemically grafted rGO (P.Fc/rGO) as a battery-type supercapacitor electrode material. For this purpose, initially, the ability of the aqueous Damson fruit extract is investigated in the reduction reaction of graphene oxide (GO). 1-(4-ferrocenylbutyl)piperazine (P.Fc) is synthesized via nucleophilic substitution reaction of piperazine with as-synthesized 4-chlorobutylferrocene. In continue, P. Fc is incorporated to GO by ring-opening reaction of epoxide groups on the GO surface. In the next step, the modified reduction method by aqueous Damson fruit extract was used to prepare the P.Fc/rGO from P.Fc/GO. The prepared materials were characterized by various techniques including FT-IR, Uv–vis, XRD, SEM, EDX, and BET. N2 adsorption–desorption data of P.Fc/rGO nanocomposite shows that the surface area is 37.746 m2 g−1. The capability of P.Fc/rGO nanocomposite for using as an energy storage electrode material in battery-type supercapacitor was examined by investigation of its electrochemical behavior by CV, EIS, and GCD measurements. The charge storage capacity of 1,102 mAh g−1 is achieved at 2.5 A g−1. This nanocomposite shows 89% retention of charge storage capacity after 2000 CV cycles.  相似文献   

11.
以氢氧化铁为四氧化三铁的前驱体,氧化石墨烯(GO)为还原石墨烯(rGO)的前驱体,以水合肼和二水合柠檬酸三钠为混合还原剂,采用水热法制备了还原石墨烯负载四氧化三铁纳米颗粒(Fe3O4/rGO)的复合材料。通过透射电子显微镜(TEM)、X-射线衍射(XRD)和热重分析(TGA)对产物的形貌、结构和组成进行了表征。以锂片为对电极进行了扣式电池的组装,通过恒电流充放电和循环伏安法对其电化学性能进行了测试。材料具有均一的形貌,rGO具有较高的还原程度且可以在充放电过程中缓冲Fe3O4纳米颗粒的体积变化,使得Fe3O4/rGO纳米复合物具有较好的电化学性能。  相似文献   

12.
Tian J  Liu S  Zhang Y  Li H  Wang L  Luo Y  Asiri AM  Al-Youbi AO  Sun X 《Inorganic chemistry》2012,51(8):4742-4746
In this paper, we develop an environmentally friendly, one-pot strategy toward rapid preparation of Ag nanoparticle-decorated reducd graphene oxide (AgNPs/rGO) composites by heating the mixture of GO and AgNO(3) aqueous solution in the presence of sodium hydroxide at 80 °C under stirring. The reaction was accomplished within a short period of 10 min without extra reducing agent. As-synthesized AgNPs/rGO composites have been successfully applied in photocurrent generation in the visible spectral region.  相似文献   

13.
A novel ε-HNIW-based explosive formula with low sensitive and high energy was developed by systematically researching the processes of recrystallization, granularity gradation, and coating of ε-HNIW and option of energetic deterrents. The grain size and morphology of HNIW crystals were modified by solvent/antisolvent recrystallization. The ε-HNIW particles were graded and coated by emulsion polymerization method with 551 glue. The binder reduced the mechanical sensitivity of ε-HNIW significantly and showed good compatibility with ε-HNIW, but also weakened the decomposition enthalpy. With the purpose of developing new energetic deterrents in insensitive high explosive formulations, novel carbon materials graphene oxide (GO) and reduced graphene oxide (rGO) were prepared and incorporated in plastic-bonded explosive (PBX) formulations. For comparison, the effects of conventional deterrent flake graphite were also involved. It turned out that the mechanical sensitivities of ε-HNIW/551 glue have all reduced to some extent with the incorporation of graphite, GO, and rGO. Flake graphite induced the PBX decompose earlier slightly and weaken the heat output. The addition of GO resulted in noticeable antedating decomposition of ε-HNIW/551 glue although remarkably increased the decomposition heat. The formula of ε-HNIW/551 glue/rGO provided a moderate growth in decomposition heat and best thermal stability. In slow cook-off tests, the formulas of ε-HNIW/551 glue and ε-HNIW/551 glue/rGO showed good thermal stability and might be qualified to apply safely under 200 °C. Comprehensively considering the mechanical sensitivity, thermals stability, energy performance, and practical application, ε-HNIW/551 glue/rGO is supposed to be an eligible insensitive high-energy PBX formula.  相似文献   

14.
The necessity of drying the graphene oxide suspension (GOsus) using Hummer's Method to produce graphene oxide (GO) powder was studied. The undried GOsus was compared to the dried GO. The GO materials were used as Pt supports via NaBH4 reduction for O2 reduction. XRD patterns showed similar d-spacing in both while the half-cell tests of the Pt/rGOsus and Pt/rGO catalysts were similar. GOsus film, deposited onto Toray Carbon Paper and electrochemically reduced in aq. H2SO4 was tested as a capacitor. The suspension and dried graphene-based capacitor showed similar XRD and XPS patterns and the erGOsus capacitor displayed increased capacitance.  相似文献   

15.
The concise synthesis of sulfur-enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur-enriched-reduced GO (S-rGO). Various techniques, such as X-ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S-rGO with polyoxometalate (POM) as a cathode-active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S-rGO surface. This battery, based on a POM/S-rGO complex, exhibited greater cycling stability for the charge-discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur-containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.  相似文献   

16.
Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.  相似文献   

17.
An electrochemistry-assisted microstructuring process is developed for fabricating well-aligned reduced graphene oxide (rGO)-based micropatterns on arbitrary substrates using a combined method of photolithography, electrochemical reduction and wet etching techniques. The dimension of special-shaped rGO microarrays localized in an insulating GO matrix is effectively adjusted by changing GO reduction time without multi-mask patterning. The increased conductivity of rGO micropatterns by several orders of magnitude is achieved by controlling GO thickness and reduction time. The electrochemical activity of rGO micropatterns as microarray electrodes is confirmed by using ferricyanide in aqueous solution as the redox probe. The present method could be a scalable technology to conventional photolithography for fabricating arbitrary rGO micropatterns in an insulating GO matrix for their potential applications in next generation electronic and electrochemical devices.  相似文献   

18.
The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capability for UO22+ were synthesized by in situ polymerization of acrylonitrile monomers on GO surfaces, followed by amidoximation treatment with hydroxylamine. The adsorption capacities of PAO/rGO composites for UO22+ reached as high as 872 mg/g at pH 4.0. The excellent tolerance of these composites for high salinity and their regeneration-reuse properties can be applied in the nuclear-fuel industry by high extraction of trace UO22+ ions from seawater.  相似文献   

19.
Highly flexible graphene/poly(methylene blue)/AgNPs composite paper was successfully prepared for amperometric biosensing of NADH. For this purpose, a dispersion including graphene oxide (GO), methylene blue (MB) and silver nanoparticles (AgNPs) was prepared and GO/MB/AgNPs paper was acquired by vacuum‐filtration of this dispersion through a suitable membrane. After peeling it off from membrane, it was transformed to rGO/MB/AgNPs paper by performing reduction with hydriodic acid. In a three‐electrode cell, which is containing 0.1 M phosphate buffer solution (pH: 9.0), rGO/MB/AgNPs paper was used as working electrode and rGO/poly(MB)/AgNPs composite paper was generated by surface‐confined electropolymerization of MB using successive cyclic voltammetry approach in a suitable potential window. Characterization of this composite paper was carried out by using scanning electron microscopy, scanning tunneling microscopy, X‐ray photoelectron spectroscopy, powder X‐ray diffraction spectroscopy, Raman spectroscopy, four‐point probe conductivity measurement and cyclic voltammetry techniques. Flexible rGO/poly(MB)/AgNPs composite paper has demonstrated high sensitivity, wide linear range and low detection limit for amperometric quantification of NADH.  相似文献   

20.
Research into the structure, properties and applications of graphene has moved at a tremendous pace over the past few years. This review describes one aspect of this research, that of the incorporation of graphene particles with a range of polymers to create novel hybrid materials with increased functionality such as improved conductance, increased strength and introduced biocompatibility or cytotoxicity. This review focuses on dispersing graphene in polymer matrices, both insulating and conducting. Additionally, a brief discussion of carbon based platelet production methods is given in order to provide context on the subsequent use of this family of materials such as graphene, graphene oxide (GO) and reduced graphene oxide (rGO) incorporated into polymeric thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号