首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Collision-induced dissociation of the ions [ArS]?, [ArSO]? and [ArSO2]? has uncovered a rich and varied ion chemistry. The major fragmentations of [ArS]? are complex and occur without prior ring hydrogen scrambling: for example, [C6H5S]?→[C2HS]? and [HS]?; [p-CD3C6H4S]?→[C6H4S]?˙, [CD3C4S]? and [C2HS]?. In contrast, all decompositions of [C6H5CH2S]? are preceded by specific benzylic and phenyl hydrogen interchange reactions. [ArSO2]? and [ArSO2]? ions undergo rearrangement, e.g. [C6H5SO]?→[C6H5O]? and [C6H5S]?; [C6H5SO2]?→[C6H5O] ?. The ion [C6H5CH2SO]? eliminates water, this decomposition is preceded by benzylic and phenyl hydrogen exchange.  相似文献   

2.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

3.
A convenient method to isolate inverted cucurbit[7]uril (iQ[7]) from a mixture of water‐soluble Q[n]s was established by eluting the soluble mixture of Q[n]s on a Dowex (H+ form) column so that iQ[7] could be selected as a ligand for coordination and supramolecular assembly with alkaline earth cations (AE2+) in aqueous HCl solutions in the presence of [ZnCl4]2? and [CdCl4]2? anions as structure‐directing agents. Single‐crystal X‐ray diffraction analysis revealed that both iQ[7]–AE2+–[ZnCl4]2?–HCl and iQ[7]–AE2+–[CdCl4]2?–HCl interaction systems yielded supramolecular assemblies, in which the [ZnCl4]2? and [CdCl4]2? anions presented a honeycomb effect, and this resulted in the formation of linear iQ[7]/AE2+ coordination polymers through outer‐surface interactions of Q[n]s.  相似文献   

4.
Pseudoelement Compounds. IV. Modification of the Ions Sulfite [SO2Y]2?, Sulfate [SO4?nYn]2?, and Sulfonate [RSO2Y]? by Introducing Pseudochalcogen Groups NCN and C(CN)2 . Described is the synthesis of pseudochalcogen modified sulfites M2[SOY2], sulfates M2[SO4?nYn] (Y = NCN), and arylsulfonates M[RSO2Y] (Y = NCN, C(CN)2). The 13C-NMR and IR spectra of the new compounds are discussed.  相似文献   

5.
Preparation and Spectroscopic Characterization of the Monofluorohydro-closo-borates [B6H5F]2? and [B12H11F]2? By treatment of [B6H6]2? with 1-(chloromethyl)-4-fluoro-1,4-diazabicyclo[2.2.2]octane-bis(tetrafluoroborate)in acetonitrile monofluorohydro-closo-hexaborate [B6H5F]2? ( 1 ) is formed in good yields. [B12H12]2? reacts with unhydrous HF yielding the monofluorododecaborate [B12H11F]2? ( 2 ). These compounds are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from by-products. The 11B nmr spectra exhibit the characteristic patterns (1 : 4 : 1) of a monosubstituted B6 octahedron and (1 : 5 : 5 : 1) of a monosubstituted B12 icosahedron with strong downfield shifts of the ipso-B nuclei at +9.3 ppm ( 1 ) and at +9.0 ppm ( 2 ). The 19F nmr spectra reveal quartets at ?212 ppm ( 1 ) and ?209 ppm ( 2 ) proving a B? F bonding. In the i.r. spectra, for ( 1 ) in the Raman spectrum too, cage vibrations depending on the F substituent at 1195 ( 1 ) and at 1182/1154 cm?1 ( 2 ) are observed. The Raman spectra show the B6F stretching mode at 535 cm?1 and the B12F stretching vibration at 445 cm?1.  相似文献   

6.
The closo‐dodecaborate [B12H12]2? is degraded at room temperature by oxygen in an acidic aqueous solution in the course of several weeks to give B(OH)3. The degradation is induced by Ag2+ ions, generated from Ag+ by the action of H2S2O8. Oxa‐nido‐dodecaborate(1?) is an intermediate anion, that can be separated from the reaction mixture as [NBzlEt3][OB11H12] after five days in a yield of 18 %. The action of FeCl3 on the closo‐undecaborate [B11H11]2? in an aqueous solution gives either [B22H22]2? (by fusion) or nido‐B11H13(OH)? (by protonation and hydration), depending on the concentration of FeCl3. In acetonitrile, however, [B11H11]2? is transformed into [OB11H12]? by Fe3+ and oxygen. The radical anions [B12H12] ˙ ? and [B11H11] ˙ ? are assumed to be the primary products of the oxidation with the one‐electron oxidants Ag2+ and Fe3+, respectively. These radical anions are subsequently transformed into [OB11H12]? by oxygen. The crystal structure analysis shows that the structure of [OB11H12]? is derived from the hypothetical closo‐oxaborane OB12H12 by removal of the B3 vertex, leaving a non‐planar pentagonal aperture with a three‐coordinate O vertex, as predicted by NMR spectra and theory.  相似文献   

7.
Pseudoelement Compounds. XI. [1] Investigations on the Coordination Behaviour of Cyanamidonitrate [NO2NCN]? With the ionic, potentially ambidentate ligand cyanamidonitrate complexes of the types [MX(PPh3)3], [MX(PPh3)2]2 (M?CuI, AgI) and trans-[Pt(H)X(PPh3)2] (X??[NO2NCN]?) are introduced. The new compounds are characterized by 1H NMR, 31P NMR, and IR spectroscopy. The crystal structures of [Cu(NO2NCN)(PPh3)2]2 and [Ag(NO2NCN)(PPh3)2]2 are reported. In the complexes [MX(PPh3)3] and trans-[Pt(H)X(PPh3)2] cyanamidonitrate is unidentately coordinated through the nitrile group end-on. In the dimeric complexes [MX(PPh3)2]2 the anion acts bidentately as a bridging ligand. Surprisingly, both coordinative bonds are formed through nitrogen atoms of the NCN group.  相似文献   

8.
Preparation and vibrational spectra of the complexes [MBr6]?, [Br5MN3]? and [Br5MNPPh3]? of niobium and tantalum. Cyrstal structure of PPh4[NbBr6] The compounds PPh4[MBr6] and PPh4[MBr5N3] are obtained by reaction of MBr5 with PPh4Br or PPh4N3, respectively, in CH2Cl2 solution (M ? Nb, Ta). The azido complexes PPh4[MBr5N3] can also be obtained by reactions of the hexabromo complexes with iodine azide. According to its i.r. spectrum the symmetry of the [MBr6]? ion is lower than Oh in the solide state. This is corfirmed for PPh4[NbBr6] by a crystal structure analysis; it crystallizes in the monoclinic space group B2/b with four formula units in the unit cell and with the lattice constants a = 2301, b = 1777, c = 686 pm and γ = 96,6°. The structure was determined with X-ray diffraction data and was refined to a residual index of R = 0.055. The [NbBr6]? ion has the symmetry Ci, the deviations from Oh being small. In the azido complexes [MBr5N3]? the azido groups are covalently linked with the metal. From [NbBr5N3]? and PPh3 the complex [Br5Nb?N?PPh3]?, is obtained; for the analogous formation of the corresponding Ta complex photochemical activation is necessary. In this way the complex [Cl5Nb?N?AsPh3]? can also be obtained. I.r. spectra of all the compounds are reported and assigned.  相似文献   

9.
Although pure hydrogen cyanide can spontaneously polymerize or even explode, when initiated by small amounts of bases (e.g. CN?), the reaction of liquid HCN with [WCC]CN (WCC=weakly coordinating cation=Ph4P, Ph3PNPPh3=PNP) was investigated. Depending on the cation, it was possible to extract salts containing the formal dihydrogen tricyanide [CN(HCN)2]? and trihydrogen tetracyanide ions [CN(HCN)3]? from liquid HCN when a fast crystallization was carried out at low temperatures. X‐ray structure elucidation revealed hydrogen‐bridged linear [CN(HCN)2]? and Y‐shaped [CN(HCN)3]? molecular ions in the crystal. Both anions can be considered members of highly labile cyanide‐HCN solvates of the type [CN(HCN)n]? (n=1, 2, 3 …) as well as formal polypseudohalide ions.  相似文献   

10.
Finestructure in the Vibrational and Electronic Absorption Spectra of [CrO4]2? and [MnO4]? The ir and ra spectra of Tl2[CrO4] and (C2H5)4N[MnO4] are measured and assigned. Details of the preresonance- and resonance-Raman effect are discussed. The exact knowledge of the vibrational spectrum enables the understanding of the complicated vibrational finestructure in the electronic absorption spectrum of (C2H5)4N[MnO4]. For the states of the charge-transfer t1 → e* bands are found at 15 000, 15 170 cm?1 for 1T1(I), at 17 646, 17 708, 17 809 cm?1 for 1T2(II) and at 17 920, 17 992 and 18 080 cm?1 for 3T2(III). The electronic origin for the states of the t2 → e* chargetransfer is at 24 661 for 1T1(IV) and 30 230 cm?1 for 1T2(V). The vibrational coupling is only with the totally symmetric Mn? O-stretching-vibration. Bands at 29 500 cm?1 and 44 450 cm?1 are assigned to the 1T2-states of the t1, t2 → t2* charge-transfer.  相似文献   

11.
The addition of Sn and Zn ions to [Ge9] clusters by reaction of [Ge9]4? with SnPh2Cl2, ZnCp*2 (Cp*=pentamethylcyclopentadienyl), or Zn2[HC(Ph2P=NPh)2]2 is reported. The resulting Sn‐ and Zn‐bridged clusters [(Ge9)M(Ge9)]q? (M=Sn, q=4; M=Zn, q=6) display various coordination modes. The M atoms that coordinate to the open square of a C4v‐symmetric [Ge9] cluster form strong covalent multicenter M?Ge bonds, in contrast to the M atoms coordinating to triangular cluster faces. Molecular orbital analyses show that the M atoms of the Ge9M fragments coordinate to a second [Ge9] cluster with similar orbitals but in different ways. The [Ge9Sn]2?unit donates two electrons to the triangular face of a second [Ge9]2? cluster with D3h symmetry, whereas [Ge9Zn]2?acts as an electron acceptor when interacting with the triangular face of a D3h‐symmetric [Ge9]4? unit.  相似文献   

12.
Electronic Structure of Structural Open Derivatives of the [Mo6X14]2?-Cluster: [Mo5Cl13]2? and [Mo4I11]2? The electronic structure of structural open derivatives of the [Mo6X14]2?-cluster [Mo5Cl13]2? and [Mo4I11]2? has been studied by the EHMO method. In [Mo5Cl13]2? 9 occupied MO's with dominant Mo4d character are responsible for the formation of the 8 metal-metal bonds. In [Mo4I11]2? the stronger covalent character of the Mo? I bonds affects the localization and the energy of molecular orbitals and also the charge distribution. The metal-metal bonds are formed by 8 MO's containing considerable participation of halogen AO's contrary to the chloride cluster. There is no bonding between the Mo atoms at the wing tips of the Mo4 butterfly and the reason for decreasing the dihedral angle between the Mo3 planes in [Mo4I11]2? compared with the octahedral angle is apparently the stabilization of the whole system (Mo? Mo and Mo? I bonds). The unpaired electron occupies in both clusters a slightly antibonding (with regard to the Mo? Mo bonds) orbital.  相似文献   

13.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

14.
Reactions in the gas phase of the 13- and 15-electron radical anions [Cr(CO)3]? ˙ and [Cr(CO)4]? ˙ with a series of 27 aldehydes, ketones, esters and ethers have been examined. Sequential alkane eliminations and metal-bonded CO ligand displacements were the principal reactions identified for the RCHO/[Cr(CO)3]? ˙ systems with the latter reaction also common to the RCHO/[Cr(CO)4]? ˙ systems. While [Cr(CO)4]? ˙ was generally unreactive towards ketones R · R'CO, the principal products identified for [Cr(CO)3]? ˙/ketone reactions were the metal-decarbonylated species, respectively [R · R'CO · Cr(CO)x]? ˙ with x = 0–3, and [R · (R' - H2)CO · Cr(CO)2]? ˙. The reaction of [Cr(CO)3]? ˙ with esters RCOOR' proceeds via metal insertion into the alkoxy C? O bond to give end products of the type [R'O · Cr · R(CO)2]? and [R'O? Cr(CO)3]? while the sole ionic products of dialkyl ether/[Cr(CO)3]? ˙ reactions were identified as the alkoxytricarbonylchromium species [RO · Cr(CO)3]?.  相似文献   

15.
The behaviour of Na[HCO2], Na[HCOS], and K[HCS2] in aqueous solutions between 4 and 42°C was investigated by means of conductivity measurements. The equivalent conductivities Λ of [HCO2]?, [HCOS]?, and [HCS2]? and the dissociation constants Kc of HCOSH and HCSSH were determined. The STOKES radii of the ions, the radii of the hydrated ions, and their diffusion coefficients were calculated.  相似文献   

16.
Anionie Nickel Pseudohalide Complexes of the Types [Ni{N(CN)2}3]? and [Ni{N(CN)2}2(NCS)2]2? The preparation of a new type of anionic pseudohalide complexes of nickel [Ni{N(CN)2}3]? and of mixed thiocyanate-dicyanamide complexes [Ni{N(CN)2}2(NCS)2]2? is reported. The structures of the complexes are discussed on the basis of IR- and magnetic measurements. The new compounds are representing polymer octahedral complexes with a bridging function of the dicyanamide ligands.  相似文献   

17.
[Bis(imidazolyl)–BH2]+[bis(triazolyl)–BH2]? and [bis(imidazolyl)–BH2]+[tris(triazolyl)–BH]? were synthesized, the cations and anions of which were functionalized with B?H groups and azoles. As B?H groups contribute to the hypergolic activity and azole groups improve the energy output, the resulting ionic liquids exhibited ignition delay times as low as 20 ms and energy outputs as high as 461.1 kJ mol?1. In addition, densities (1.07–1.22 g cm?3) and density‐specific impulse (≈360 s g cm?3) values reached a relatively high level. These ionic liquids show great promise as sustainable rocket fuels.  相似文献   

18.
A new type of Zintl phase is presented that contains endohedrally filled clusters and that allows for the formation of intermetalloid clusters in solution by a one‐step synthesis. The intermetallic compound K5?xCo1?xSn9 was obtained by the reaction of a preformed Co? Sn alloy with potassium and tin at high temperatures. The diamagnetic saltlike ternary phase contains discrete [Co@Sn9]5? clusters that are separated by K+ ions. The intermetallic compound K5?xCo1?xSn9 readily and incongruently dissolves in ethylenediamine and in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (2.2.2‐crypt), thereby leading to the formation of crystalline [K([2.2.2]crypt)]5[Co2Sn17]. The novel polyanion [Co2Sn17]5? contains two Co‐filled Sn9 clusters that share one vertex. Both compounds were characterized by single‐crystal X‐ray structure analysis. The diamagnetism of K5?xCo1?xSn9 and the paramagnetism of [K([2.2.2]crypt)]5[Co2Sn17] have been confirmed by superconducting quantum interference device (SQUID) and EPR measurements, respectively. Quantum chemical calculations reveal an endohedral Co1? atom in an [Sn9]4? nido cluster for [Co@Sn9]5? and confirm the stability of the paramagnetic [Co2Sn17]5? unit.  相似文献   

19.
Are the ‘Textbook Anions’ O2?, [CO3]2?, and [SO4]2? Fictitious? Experimental second electron affinities are still unknown for the title anions. It will be shown by means of quantum chemical ab initio calculations that these dianions are unstable with respect to spontaneous ionization. They all must be designated as non-existent.  相似文献   

20.
In this work, the largest heterometallic supertetrahedral clusters, [Zn6Ge16]4? and [Cd6Ge16]4?, were directly self‐assembled through highly‐charged [Ge4]4? units and transition metal cations, in which 3‐center–2‐electron σ bonding in Ge2Zn or Ge2Cd triangles plays a vital role in the stabilization of the whole structure. The cluster structures have an open framework with a large central cavity of diameter 4.6 Å for Zn and 5.0 Å for Cd, respectively. Time‐dependent HRESI‐MS spectra show that the larger clusters grow from smaller components with a single [Ge4]4? and ZnMes2 units. Calculations performed at the DFT level indicate a very large HOMO–LUMO energy gap in [M6Ge16]4? (2.22 eV), suggesting high kinetic stability that may offer opportunities in materials science. These observations offer a new strategy for the assembly of heterometallic clusters with high symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号