首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The deprotonation of the nido‐anion [B11H14] by two equivalents of LitBu yields the anion [B11H12]3–. Three observed 11B NMR shifts of this anion in the ratio 1 : 5 : 5 are in agreement with shifts calculated by the GIAO method on the basis of the ab initio computed geometry. The deprotonation can be reversed, giving back [B11H14] via [B11H13]2–. The thermolysis of [Li(thp)x]3[B11H12] in thp at 80 °C leads to the closo‐borate [Li(thp)3]2[B11H11] under elimination of LiH. Anhydrous air transforms [B11H12]3– into the known oxa‐nido‐dodecaborate [OB11H12]. The rhoda‐closo‐dodecaborate [L2RhB11H11]3– is formed from [B11H12]3– and RhL3Cl (L = PPh3).  相似文献   

2.
Preparation and Spectroscopic Characterization of the Monofluorohydro-closo-borates [B6H5F]2? and [B12H11F]2? By treatment of [B6H6]2? with 1-(chloromethyl)-4-fluoro-1,4-diazabicyclo[2.2.2]octane-bis(tetrafluoroborate)in acetonitrile monofluorohydro-closo-hexaborate [B6H5F]2? ( 1 ) is formed in good yields. [B12H12]2? reacts with unhydrous HF yielding the monofluorododecaborate [B12H11F]2? ( 2 ). These compounds are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from by-products. The 11B nmr spectra exhibit the characteristic patterns (1 : 4 : 1) of a monosubstituted B6 octahedron and (1 : 5 : 5 : 1) of a monosubstituted B12 icosahedron with strong downfield shifts of the ipso-B nuclei at +9.3 ppm ( 1 ) and at +9.0 ppm ( 2 ). The 19F nmr spectra reveal quartets at ?212 ppm ( 1 ) and ?209 ppm ( 2 ) proving a B? F bonding. In the i.r. spectra, for ( 1 ) in the Raman spectrum too, cage vibrations depending on the F substituent at 1195 ( 1 ) and at 1182/1154 cm?1 ( 2 ) are observed. The Raman spectra show the B6F stretching mode at 535 cm?1 and the B12F stretching vibration at 445 cm?1.  相似文献   

3.
DFT‐calculations of the geometries of the closo‐anion [B11H11]2– in its ground state and in the transition state of its skeletal rearrangement and of the protonated species [B11H12] in its ground state were performed at the B3LYP/6‐31++G(d,p) level. The corresponding NMR shifts were computed on the basis of the optimized geometry by the GIAO method at the same level. Calculated and observed NMR data are in good agreement and thus prove the structure of [B11H12], previously deduced from 2 D‐NMR spectra. The addition of water, ethanol, and pyridine to [B11H12] at low temperature gave the nido‐species [B11H13(OH)], [B11H13(OEt)], and [B11H12(py)], respectively. The structures of these anions were investigated by NMR methods and the last two of them by crystal structure analyses of appropriate salts. The course of the addition reactions can be rationalized on the basis of the structurally characterized reaction components.  相似文献   

4.
Preparation and Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Dodecaborates(2?), [(C5H5N)2CH2][B12H11X]; X = Cl, Br, I [B12H12]2? reacts with dihalogenomethanes CH2X2 in presence of trifluoro acetic acid, yielding the monohalogenododecaborates [B12H11X]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of [(C5H5N)2CH2][B12H11Cl] · 2(CH3)2SO (orthorhombic, space group Pnma, a = 17.351(6), b = 16.034(5), c = 9.659(2) Å, Z = 4) and of the isotypic bromo and iodo compounds [(C5H5N)2CH2][B12H11X] (monoclinic, space group P21/n, Z = 4; for X = Br: a = 7.339(2), b = 15.275(3), c = 16.761(4) Å, β = 96.80(2)°; for X = I: a = 7.4436(8), b = 15.3510(8), c = 16.9213(16) Å, ß = 97.326(7)°) exhibit crystal lattices build up by columns of substituted boron clusters and angular dications [(C5H5N)2CH2]2+ orientated along the shortest axis which are assembled to alternating layers.  相似文献   

5.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

6.
The lithiacarborane [Li?CB11H11]? plays a central role in carborane chemistry, as it is a key intermediate to achieve the selective functionalization of the monocarba‐closo‐dodecaborate [CB11H12]? for applications in various fields. Also, it is an organometallic species of fundamental interest because it represents a 3D analogue of phenyllithium featuring an exo C?Li bond in addition to the delocalized negative endo charge of the spherical cluster. For the first time, the elusive and highly reactive endo/exo formal dianion [CB11H11]2? has been isolated as its lithiate as well as zincate in pure form and fully characterized. DFT calculations corroborate the experimental findings and underscore the remarkably high reactivity of the lithiacarborane. Subsequent derivatizations demonstrate the relevance of its initial clean formation.  相似文献   

7.
The lithiacarborane [Li?CB11H11]? plays a central role in carborane chemistry, as it is a key intermediate to achieve the selective functionalization of the monocarba‐closo‐dodecaborate [CB11H12]? for applications in various fields. Also, it is an organometallic species of fundamental interest because it represents a 3D analogue of phenyllithium featuring an exo C?Li bond in addition to the delocalized negative endo charge of the spherical cluster. For the first time, the elusive and highly reactive endo/exo formal dianion [CB11H11]2? has been isolated as its lithiate as well as zincate in pure form and fully characterized. DFT calculations corroborate the experimental findings and underscore the remarkably high reactivity of the lithiacarborane. Subsequent derivatizations demonstrate the relevance of its initial clean formation.  相似文献   

8.
Tetraethyl­ammonium 7‐di­methyl­sulfanyl‐nido‐dodeca­hydro­undecaborate, [Et4N][7‐Me2S‐nido‐B11H12] or C8H20N+·C2H18B11S, is a product of the deprotonation of [7‐Me2S‐nido‐B11H13] with KHBEt3 and precipitation with tetraethyl­ammonium chloride. The effect of removing one endo‐terminal H atom is to cause a general contraction of the open‐face B—B distances.  相似文献   

9.
Bis(tetramethylammonium) dodecahydrododecaborate, [(CH3)4N]2[B12H12], and bis(tetramethylammonium) dodecahydrododecaborate acetonitrile, [(CH3)4N]2[B12H12] · CH3CN, were synthesized and characterized via Infrared, 1H and 11B NMR spectroscopy. [(CH3)4N]2[B12H12] crystallizes isopunctual to the alkali metal dodecaborates. The crystal structure of [(CH3)4N]2[B12H12] · CH3CN was determined from single crystal data and refined in the orthorhombic crystal system (Pcmn, no. 62, a = 898.68(8), b = 1312.85(9) c = 1994.5(1) pm, R(|F| , 4σ) = 5.9%, wR(F2) = 18.3%). Here, the geometry of the dodecaborate anion is that of an almost ideal icosahedron, less distorted than most other dodecaborates known. By low‐temperature Guinier‐Simon diffractometry phase transitions were detected for [(CH3)4N]2[B12H12] and [(CH3)4N]2[B12H12] · CH3CN at –70 and –15 °C, respectively.  相似文献   

10.
The weakly coordinating anion [Me3NB12Cl11]? has been prepared by a simple two‐step procedure. The anion [Me3NB12Cl11]? is easily obtained in batches of up to 20 g by chlorination of the known [H3NB12H11]? anion with SbCl5 at about 190 °C and subsequent N‐methylation with methyl iodide. Starting from Na[Me3NB12Cl11], several synthetically useful salts with reactive cations ([NO]+, [Ph3C]+, and [(Et3Si)2H]+) were prepared. Full spectroscopic (NMR, IR, Raman, TGA, MS) characterization and single‐crystal X‐ray diffraction studies confirmed the identity and purity of the products. The thermal, chemical, and electrochemical stability as well as the basicity of the [Me3NB12Cl11]? anion is similar to that of the structurally related weakly coordinating 1‐carba‐closo‐dodecaborate and closo‐dodecaborate anions. The facile preparation of the [Me3NB12Cl11]? anion and its ideal chemical and physical properties make it a cheap alternative to other classes of weakly coordinating anions.  相似文献   

11.
On the Crystal Structures of the Transition‐Metal(II) Dodecahydro‐closo‐Dodecaborate Hydrates Cu(H2O)5.5[B12H12]·2.5 H2O and Zn(H2O)6[B12H12]·6 H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic copper(II) carbonate or zinc carbonate, blue lath‐shaped single crystals of the octahydrate Cu[B12H12]·8 H2O (≡ Cu(H2O)5.5[B12H12]·2.5 H2O) and colourless face‐rich single crystals of the dodecahydrate Zn[B12H12]·12 H2O (≡ Zn(H2O)6[B12H12]·6 H2O) could be isolated after isothermic evaporation. Copper(II) dodecahydro‐closo‐dodecaborate octahydrate crystallizes at room temperature in the monoclinic system with the non‐centrosymmetric space group Pm (Cu(H2O)5.5[B12H12]·2.5 H2O: a = 768.23(5), b = 1434.48(9), c = 777.31(5) pm, β = 90.894(6)°; Z = 2), whereas zinc dodecahydro‐closo‐dodecaborate dodecahydrate crystallizes cubic in the likewise non‐centrosymmetric space group F23 (Zn(H2O)6[B12H12]·6 H2O: a = 1637.43(9) pm; Z = 8). The crystal structure of Cu(H2O)5.5[B12H12]·2.5 H2O can be described as a monoclinic distortion variant of the CsCl‐type arrangement. As characteristic feature the formation of isolated [Cu2(H2O)11]4+ units as a condensate of two corner‐linked Jahn‐Teller distorted [Cu(H2O)6]2+ octahedra via an oxygen atom of crystal water can be considered. Since “zeolitic” water of hydratation is also present, obviously both classical H–Oδ?···H–O and non‐classical B–Hδ?···H–O hydrogen bonds play a significant role for the stabilization of the structure. A direct coordinative influence of the quasi‐icosahedral [B12H12]2? anions on the Cu2+ cations has not been determined. The zinc compound Zn(H2O)6[B12H12]·6 H2O crystallizes in a NaTl‐type related structure. Two crystallographically different [Zn(H2O)6]2+ octahedra are present, which only differ in their relative orientation within the packing of the [B12H12]2? anions. The stabilization of the crystal structure takes place mainly via H–Oδ?···H–O hydrogen bonds, since again the hydrogen atoms of the [B12H12]2? anions have no direct coordinative influence on the Zn2+ cations.  相似文献   

12.
Synthesis and Vibrational Spectroscopic Investigation of [H3B? Se? Se? BH3]2? and [H3B-μ2-Se(B2H5)]? Crystal Structure and Theoretical Investigation of the Molecular Structure of [H3B-μ2-Se(B2H5)]? M2[H3B? Se? Se? BH3] 1 is produced by the reaction between elemental selenium and MBH4 (1 : 1) in triglyme (diglyme), under dehydrogenation. 1 reacts with an excess of B2H6 to give M[H3B-μ2-Se(B2H5)] 2 which is also formed in the reaction of THF · BH3 with 1 . These reactions proceed under cleavage of the Se? Se bond and hydrogen evolution. [(C6H5)4]Br reacts with Na · 2 to form [(C6H5)4P] · 2 which crystallizes in the tetragonal space group I4 (Nr. 82). An X-ray structure determination failed because of disordering of the cation and anion. 11B, 77Se NMR shifts and 1J(11B1H) coupling constants as well as IR- and Raman spectroscopic investigations convey further structural information. Structural data of 2 have been calculated by SCF methods. The anion of 2 may be viewed either as an adduct of Se with B3H8?, or as a bridge substituted selena derivative of B2H6.  相似文献   

13.
The first primary 2‐aminocarba‐closo‐dodecaborates [1‐R‐2‐H2N‐closo‐CB11H10]? (R=H ( 1 ), Ph ( 2 )) have been synthesized by insertion reactions of (Me3Si)2NBCl2 into the trianions [7‐R‐7‐nido‐CB10H10]3?. The difunctionalized species [1,2‐(H2N)2closo‐CB11H10] ( 3 ) and 1‐CyHN‐2‐H3N‐closo‐CB11H10 (H‐ 4 ) have been prepared analogously from (Me3Si)2NBCl2 and 7‐H3N‐7‐nido‐CB10H12. In addition, the preparation of [Et4N][1‐H2N‐2‐Ph‐closo‐CB11H10] ([Et4N]‐ 5 ) starting from PhBCl2 and 7‐H3N‐7‐nido‐CB10H12 is described. Methylation of the [1‐Ph‐2‐H2N‐closo‐CB11H10]? ion ( 2 ) to produce 1‐Ph‐2‐Me3N‐closo‐CB11H10 ( 6 ) is reported. The crystal structures of [Et4N]‐ 2 , [Et4N]‐ 5 , and 6 were determined and the geometric parameters were compared to theoretical values derived from DFT and ab initio calculations. All new compounds were studied by NMR, IR, and Raman spectroscopy, MALDI mass spectrometry, and elemental analysis. The discussion of the experimental NMR chemical shifts and of selected vibrational band positions is supported by theoretical data. The thermal properties were investigated by differential scanning calorimetry (DSC). The pKa values of 2‐H3N‐closo‐CB11H11 (H‐ 1 ), 1‐H3N‐closo‐CB11H10 (H‐ 7 ), and 1,2‐(H3N)2closo‐CB11H10 (H2‐ 3 ) were determined by potentiometric titration and by NMR studies. The experimental results are compared to theoretical data (DFT and ab initio). The basicities of the aminocarba‐closo‐dodecaborates agree well with the spectroscopic and structural properties.  相似文献   

14.
Crystal Structure of Tetraphenylphosphonium Monothiocyanatohydro-closo-Decaborate, [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN The X-ray structure determination of [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN (monoclinic, space group P21/n, a = 10.6040(10), b = 13.8880(9), c = 33.888(3) Å, β = 94.095(8)°, Z = 4) reveals the S coordination of the SCN substituent with a B? S distance of 1.913(6) Å and a B? S? C angle of 105.3(3)°. The SCN group is nearly linear (178.2(7)°).  相似文献   

15.
Reactions of [B12H12–n(OH)n]2–, n = 1, 2 with Acid Dichlorides and Crystal Structure of Cs2[1,2-B12H10(ox)] · CH3OH By treatment of [B12H11(OH)]2– with organic and inorganic acid dichlorides in acetonitrile the bridged dicluster compounds [B12H11(ox)B12H11)]4– ( 1 ), [B12H11(p-OOCC6H4COO)B12H11]4– ( 2 ), [B12H11(m-OOCC6H4COO)B12H11]4– ( 3 ), [B12H11(SO3)B12H11]4– ( 4 ), [B12H11(SO4)B12H11]4– ( 5 ) are obtained in good yields. The dihydroxododecaborates [1,2-B12H10(OH)2]2– and [1,7-B12H10(OH)2]2– afford clusters with an anellated ring: [1,2-B12H10(ox)]2– ( 6 ), [1,2-B12H10(SO4)]2– ( 7 ) and [1,7-B12H10(OOC(CH2)8COO)]2– ( 8 ). Isomerically pure [1,7-B12H10(OH)2]2– ( 9 ) is formed by reaction of (H3O)2[B12H12] with ethylene glycol. All new compounds are characterized by vibrational, 11B, 13C and 1H NMR spectra. The crystal structure of Cs2[1,2-B12H10(ox)] · CH3OH (monoclinic, space group P 21/c, a = 9.616(2), b = 10.817(1), c = 15.875(6) Å, β = 95.84(8)°, Z = 4) reveals a distortion of the B12 icosahedron caused by the anellated six-membered heteroring.  相似文献   

16.
Synthesis and Crystal Structure of Cadmium Dodecahydro closo‐Dodecaborate Hexahydrate, Cd(H2O)6[B12H12] Through neutralization of the aqueous free acid (H3O)2[B12H12] with cadmium carbonate (CdCO3) and after isothermic evaporation of the resulting solution, colourless lath‐shaped single crystals of Cd(H2O)6[B12H12] are obtained. Cadmium dodecahydro closo‐dodecaborate hexahydrate crystallizes at room temperature in the monoclinic system (space group: C2/m) with the lattice constants a = 1413.42(9), b = 1439.57(9), c = 749.21(5) pm and β = 97.232(4)° (Z = 4). The crystal structure of Cd(H2O)6[B12H12] can be regarded as a monoclinic distortion variant of the CsCl‐type structure. Two crystallographically different [Cd(H2O)6]2+ octahedra (d(Cd–O) = 227–230 pm) are present which only differ in their relative orientation. The intramolecular bond lengths for the quasi‐icosahedral [B12H12]2? cluster anions range in the intervals usually found for dodecahydro closo‐dodecaborates (d(B–B) = 177–179 pm, d(B–H) = 103–116 pm). The hydrogen atoms of the [B12H12]2? clusters have no direct coordinative influence on the Cd2+ cations. Due to the fact that no “zeolitic” crystal water molecules are present, a stabilization of the lattice takes place mainly via the B–Hδ?···H–O hydrogen bonds.  相似文献   

17.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

18.
The perhalogenated closo‐dodecaborate dianions [B12X12]2? (X=H, F, Cl, Br, I) are three‐dimensional counterparts to the two‐dimensional aromatics C6X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12H12]2? and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo‐dodecaborate dianions [B12X12]2? with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2) yielded the corresponding radical anions [B12X12] ? ? (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso‐boranes B12X12 (X=Cl, Br). These compounds were characterized by single‐crystal X‐ray diffraction of dark blue B12Cl12 and [Na(SO2)6][B12Br12] ? B12Br12. Sublimation of the crude reaction products that contained B12X12 (X=Cl, Br) resulted in pure dark blue B12Cl12 or decomposition to red B9Br9, respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2‐TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12X12]2? dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12X12]2? dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo‐dodecaborate dianions [B12X12]2? (X=F, Cl, Br, I) by cyclic and Osteryoung square‐wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12X12]2? (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi‐reversible (with oxidation potentials in the range between +1.68 and +2.29 V (lSO2, versus ferrocene/ferrocenium (Fc0/+))), the second process is irreversible (with oxidation potentials ranging from +2.63 to +2.71 V (lSO2, versus Fc0/+)). [B12I12]2? showed a complex oxidation behavior in cyclic voltammetry experiments, presumably owing to decomposition of the cluster anion under release of iodide, which also explains the failure to isolate the respective radical by chemical oxidation.  相似文献   

19.
Structural Investigations on Cs2[B12H12] The crystal structure of Cs2[B12H12] has been determined from X‐ray single‐crystal data collected at room temperature. Dicesium dodecahydro‐closo‐dodecaborate crystallizes as colourless, face‐rich crystals (cubic, Fm 3; a = 1128.12(7) pm; Z = 4). Its synthesis is based on the reaction of Na[BH4] with BF3(O(C2H5)2) via the decomposition of Na[B3H8] in boiling diglyme, followed by subsequent separations, precipitations (with aqueous CsOH solution) and recrystallizations. The crystal structure is best described as anti‐CaF2‐type arrangement with the Cs+ cations in all tetrahedral interstices of the cubic closest‐packed host lattice of the icosahedral [B12H12]2–‐cluster dianions. The intramolecular bond lengths are in the range usually found in closo‐hydroborates: 178 pm for the B–B and 112 pm for the B–H distance. Twelve hydrogen atoms belonging to four [B12H12]2– icosahedra provide an almost perfect cuboctahedral coordination sphere to the Cs+ cations, and their distance of 313 pm (12 ×) attests for the salt‐like character of Cs2[B12H12] according to {(Cs+)2([B12H12]2–)}. The 11B{1H}‐NMR data in aqueous (D2O) solution are δ = –12,70 ppm (1JB–H = 125 Hz), and δ = –15,7 ppm (linewidth: δν1/2 = 295 Hz) for the solid state 11B‐MAS‐NMR.  相似文献   

20.
Dodecahydro‐ closo ‐dodecaborates of the Heavy Alkaline‐Earth Metals from Aqueous Solution: Ca(H2O)7[B12H12] · H2O, Sr(H2O)8[B12H12], and Ba(H2O)6[B12H12] The crystalline hydrates of the heavy alkaline earth metal dodecahydro‐closo‐dodecaborates (M[B12H12] · n H2O, n = 6–8; M = Ca, Sr, Ba) are easily accessible by reaction of an aqueous (H3O)2[B12H12] solution with an alkaline earth metal carbonate (MCO3). By isothermic evaporation of the respective aqueous solution we obtained colourless single crystals which are characterized by X‐ray diffraction at room temperature. The three compounds Ca(H2O)7[B12H12] · H2O (orthorhombic, P212121; a = 1161.19(7), b = 1229.63(8), c = 1232.24(8) pm; Z = 4), Sr(H2O)8[B12H12] (trigonal, R3; a = 1012.71(6), c = 1462.94(9) pm; Z = 3) and Ba(H2O)6[B12H12] (orthorhombic, Cmcm; a = 1189.26(7) pm, b = 919.23(5) pm, c = 1403.54(9) pm; Z = 4) are neither formula‐equal nor isostructural. The structure of Sr(H2O)8[B12H12] is best described as a NaCl‐type arrangement, Ba(H2O)6[B12H12] rather forms a layer‐like and Ca(H2O)7[B12H12] · H2O a channel‐like structure. In first sphere the alkaline earth metal cations Ca2+ and Sr2+ are coordinated by just seven and eight oxygen atoms from the surrounding water molecules, respectively. A direct coordinative influence of the quasi‐icosahedral [B12H12]2– cluster anions becomes noticeable only for the Ba2+ cations (CN = 12) in Ba(H2O)6[B12H12]. The dehydratation of the alkaline earth metal dodecahydro‐closo‐dodecaborate hydrates has been shown to take place in several steps. Thermal treatment leads to the anhydrous compounds Ca[B12H12], Sr[B12H12] and Ba[B12H12] at 224, 164 and 116 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号