首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new and general method to produce flexible, wearable dye‐sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal–textile electrode that was made from micrometer‐sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire‐shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light.  相似文献   

2.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

3.
Using a copper wire as the substrate for the CVD growth of a hollow multilayer graphene tube, we prepared a macroscopic porous graphene fiber by removing the copper in an aqueous mixture solution of iron chloride (FeCl3, 1 M ) and hydrochloric acid (HCl, 3 M ) and continuously drawing the newly released graphene tube out of the liquid. The length of the macroscopic graphene fiber thus produced is determined mainly by the length of the copper wire used. The resultant macroscopic graphene fiber with the integrated graphene structure exhibited a high electrical conductivity (127.3 S cm?1) and good flexibility over thousands bending cycles, showing great promise as flexible electrodes for wearable optoelectronics and energy devices—exemplified by its use as a flexible conductive wire for lighting a LED and a cathode in a fiber‐shaped dye‐sensitized solar cell (DSSC) with one of the highest energy conversion efficiencies (3.25 %) among fiber‐shaped DSSCs.  相似文献   

4.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   

5.
A flexible and wearable aqueous lithium‐ion battery is introduced based on spinel Li1.1Mn2O4 cathode and a carbon‐coated NASICON‐type LiTi2(PO4)3 anode (NASICON=sodium‐ion super ionic conductor). Energy densities of 63 Wh kg?1 or 124 mWh cm?3 and power densities of 3 275 W kg?1 or 11.1 W cm?3 can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li‐ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self‐chargeable unit is realized by integrating a single flexible aqueous Li‐ion battery with a commercial flexible solar cell, which may facilitate the long‐time outdoor operation of flexible and wearable electronic devices.  相似文献   

6.
Advanced methods, allowing the controllable synthesis of ordered structural nanomaterials with favourable charges transfer and storage, are highly important to achieve ideal supercapacitors with high energy density. Herein, we report a microliter droplet‐based method to synthesize hierarchical‐structured metal–organic framework/graphene/carbon nanotubes hybrids. The confined ultra‐small‐volume reaction, give well‐defined hybrids with a large specific‐surface‐area (1206 m2 g?1), abundant ionic‐channels (narrow pore of 0.86 nm), and nitrogen active‐sites (10.63 %), resulting in high pore‐size utilization (97.9 %) and redox‐activity (32.3 %). We also propose a scalable microfluidic‐blow‐spinning method to consecutively generate nanofibre‐based flexible supercapacitor electrodes with striking flexibility and mechanical strength. The supercapacitors display large volumetric energy density (147.5 mWh cm?3), high specific capacitance (472 F cm?3) and stably deformable energy‐supply.  相似文献   

7.
Two alcohol‐soluble electron‐transport materials (ETMs), diphenyl(4‐(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl)phosphine oxide (pPBIPO) and (3,5‐bis(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl)diphenylphosphine oxide (mBPBIPO), have been synthesized. The physical properties of these ETMs were investigated and they both exhibited high electron‐transport mobilities (1.67×10?4 and 2.15×10?4 cm2 V?1 s?1), high glass‐transition temperatures (81 and 110 °C), and low LUMO energy levels (?2.87 and ?2.82 eV, respectively). The solubility of PBIPO in n‐butyl alcohol was more than 20 mg mL?1, which meets the requirement for fully solution‐processed organic light‐emitting diodes (OLEDs). Fully solution‐processed green‐phosphorescent OLEDs were fabricated by using alcohol‐soluble PBIPO as electron‐transport layers (ETLs), and they exhibited high current efficiencies, power efficiencies, and external quantum efficiencies of up to 38.43 cd A?1, 26.64 lm W?1, and 10.87 %, respectively. Compared with devices that did not contain PBIPO as an ETM, the performance of these devices was much improved, which indicated the excellent electron‐transport properties of PBIPO.  相似文献   

8.
We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g?1 (91.7 mF cm?2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg?1 and a power density of 81 kW kg?1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g?1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.  相似文献   

9.
Dendrite formation is a critical challenge for the applications of lithium (Li) metal anodes. In this work a new strategy is demonstrated to address this issue by fabricating an Li amalgam film on its surface. This protective film serves as a flexible buffer that affords repeated Li plating/stripping. In symmetric cells, the protected Li electrodes exhibit stable cycling over 750 hours at a high plating current and capacity of 8 mA cm?2 and 8 mAh cm?2, respectively. Coupled with high‐loading cathodes (ca. 12 mg cm?2) such as LiFePO4 and LiNi0.6Co0.2Mn0.2O2, the protected hybrid anodes demonstrate significantly improved cell stability, indicating its reliability for practical development of Li metal batteries. Interfacial analyses reveal a unique plating‐alloying synergistic function of the protective film, where Li beneath the film is actively involved in the electrode reactions upon cycling. Lithium amalgams enrich the alloy anode family and provide new perspectives for the rational design of dendrite‐free anodes.  相似文献   

10.
Sodium‐ion batteries (SIBs) based on flexible electrode materials are being investigated recently for improving sluggish kinetics and developing energy density. Transition metal selenides present excellent conductivity and high capacity; nevertheless, their low conductivity and serious volume expansion raise challenging issues of inferior lifespan and capacity fading. Herein, an in‐situ construction method through carbonization and selenide synergistic effect is skillfully designed to synthesize a flexible electrode of bone‐like CoSe2 nano‐thorn coated on porous carbon cloth. The designed flexible CoSe2 electrode with stable structural feature displays enhanced Na‐ion storage capabilities with good rate performance and outstanding cycling stability. As expected, the designed SIBs with flexible BL?CoSe2/PCC electrode display excellent reversible capacity with 360.7 mAh g?1 after 180 cycles at a current density of 0.1 A g?1.  相似文献   

11.
Low‐cost transparent counter electrodes (CEs) for efficient dye‐sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)‐supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic‐liquid‐assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density–voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements. The CNT/Pt hybrid films exhibit high electrocatalytic activity for I?/I3? with a weak dependence on film thickness. A transparent CNT/Pt hybrid CE film about 100 nm thick with a transparency of about 70 % (at 550 nm) can result in a high power conversion efficiency (η) of over 8.5 %, which is comparable to that of pyrolysis platinum‐based DSSCs, but lower cost. Furthermore, DSSC based on flexible CNT/Pt hybrid CE using indium‐doped tin oxide‐coated polyethylene terephthalate as the substrate also exhibits η=8.43 % with Jsc=16.85 mA cm?2, Voc=780 mV, and FF=0.64, and this shows great potential in developing highly efficient flexible DSSCs.  相似文献   

12.
Semiconductive metal–organic frameworks (MOFs) have emerged in applications such as chemical sensors, electrocatalysts, energy storage materials, and electronic devices. However, examples of semiconductive MOFs within flexible electronics have not been reported. We present flexible X‐ray detectors prepared by thermoplastic dispersal of a semiconductive MOF ( SCU‐13 ) through a commercially available polymer, poly(vinylidene fluoride). The flexible detectors exhibit efficient X‐ray‐to‐electric current conversion with enhanced charge‐carrier mobility and low trap density compared to pelleted devices. A high X‐ray detection sensitivity of 65.86 μCGyair?1 cm?2 was achieved, which outperforms other pelleted devices and commercial flexible X‐ray detectors. We demonstrate that the MOF‐based flexible detectors can be operated at multiple bending angles without a deterioration in detection performance. As a proof‐of‐concept, an X‐ray phase contrast under bending conditions was constructed using a 5×5 pixelated MOF‐based imager.  相似文献   

13.
The exploitation of metal‐free organic polymers as electrodes for water splitting reactions is limited by their presumably low activity and poor stability, especially for the oxygen evolution reaction (OER) under more critical conditions. Now, the thickness of a cheap and robust polymer, poly(p‐phenylene pyromellitimide) (PPPI) was rationally engineered by an in situ polymerization method to make the metal‐free polymer available for the first time as flexible, tailorable, efficient, and ultra‐stable electrodes for water oxidation over a wide pH range. The PPPI electrode with an optimized thickness of about 200 nm provided a current density of 32.8 mA cm?2 at an overpotential of 510 mV in 0.1 mol L?1 KOH, which is even higher than that (31.5 mA cm?2) of commercial IrO2 OER catalyst. The PPPI electrodes are scalable and stable, maintaining 92 % of its activity after a 48‐h chronoamperometric stability test.  相似文献   

14.
A wire‐shaped energy device that can perform photoelectric conversion and electrochemical storage was developed through a simple but effective twisting process. The energy wire exhibited a high energy conversion efficiency of 6.58 % and specific capacitance of 85.03 μF cm?1 or 2.13 mF cm?2, and the two functions were alternately realized without sacrificing either performance.  相似文献   

15.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The development of suitable anode materials is far from satisfactory and is a major scientific challenge for a competitive sodium‐ion battery technology. Metal sulfides have demonstrated encouraging results, but still suffer from sluggish kinetics and severe capacity decay associated with the phase change. Herein we show that rational electrode design, that is, building efficient electron/ion mixed‐conducting networks, can overcome the problems resulting from conversion reactions. A general strategy for the preparation of hierarchical carbon‐coated metal sulfide (MS?C) spheres through thermal sulfurization of metal glycerate has been developed. We demonstrate the concept by synthesizing highly uniform hierarchical carbon coated vanadium sulfide (V2S3?C) spheres, which exhibit a highly reversibly sodium storage capacity of 777 mAh g?1 at 100 mA g?1, excellent rate capability (410 mAh g?1 at 4000 mA g?1), and impressive cycling ability.  相似文献   

17.
Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (HCT‐PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm?1 and a low sheet resistance of 0.59 ohm sq?1. Organic solar cells with laminated HCT‐PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum‐deposited Ag top electrodes. More importantly, the HCT‐PEDOT:PSS film delivers a specific capacitance of 120 F g?1 at a current density of 0.4 A g?1. All‐solid‐state flexible symmetric supercapacitors with the HCT‐PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm?3 at a power density of 100 mW cm?3 and 3.15 mWh cm?3 at a very high power density of 16160 mW cm?3 that outperforms previous reported solid‐state supercapacitors based on PEDOT materials.  相似文献   

18.
Two small molecules named BT‐TPD and TBDT‐TTPD with a thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) unit were designed and synthesized for solution‐processed bulk‐heterojunction solar cells. Their thermal, electrochemical, optical, charge‐transport, and photovoltaic characteristics were investigated. These compounds exhibit strong absorption at 460–560 nm and low highest occupied molecular orbital levels (?5.36 eV). Field‐effect hole mobilities of these compounds are 1.7–7.7×10?3 cm2 V?1 s?1. Small‐molecule organic solar cells based on blends of these donor molecules and a acceptor display power conversion efficiencies as high as 4.62 % under the illumination of AM 1.5G, 100 mW cm?2.  相似文献   

19.
Most of efficient polymer electron acceptors for polymer solar cells (PSCs) are based on naphthalene diimide or perylene diimide as the electron deficient building block. In this paper, for the first time, we report polymer electron acceptors based on fluorinated isoindigo (F‐IID) as the electron deficient building block. We synthesized two polymer electron acceptors consisting of alternating F‐IID unit and thiophene/selenophen unit. They show low‐lying LUMO/HOMO energy levels of –3.69/–5.69 eV, high electron mobilities of 1.31×10–5 cm2·V–1·s–1 and broad absorption spectra with the optical bandgap of 1.61 eV. PSC devices using the two F‐IID‐based polymers as polymer electron acceptors show encouraging power conversion efficiencies (PCEs) of up to 1.50% with an open‐circuit voltage (VOC) of 0.97 V, a short‐circuit current density (JSC) of 2.91 mA·cm–2, and a fill factor (FF) of 53.2%. This work suggests a new kind of polymer electron acceptors based on F‐IID unit.  相似文献   

20.
In situ formation of electroactive cobalt species for the oxygen evolution reaction is simply achieved by applying an anodic bias to a commercially available cobalt precursor and Nafion binder mixture coated on a glassy carbon electrode. This preparation does not require energy‐intensive materials preparation steps or noble metals, yet a low overpotential of 322 mV at 10.2 mA cm?2 and a high current density of more than 300 mA cm?2 at 1.7 VNHE were obtained in 1 m KOH. An operando electrochemical Raman spectroscopy study confirmed the formation of cobalt oxyhydroxide species and the iron stimulated the equilibrium state between Co3+ and Co4+. The iron present in the alkali electrolyte or ink solution effectively activated the cobalt species, and most of the first row transition metals could also enhance the catalytic performance. The concept presented here is one of the simplest strategies for preparing highly active electrocatalysts and is very flexible for the replacement of cobalt by other transition metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号