首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
Sr0.8La0.2Zn0.2Fe11.8O19/poly(vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol–gel assisted electrospinning. Subsequently, the M-type ferrite Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers with diameters about 120 nm were obtained by calcination of these precursors at different heat treatment conditions. The precursor and resultant Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometer and vibrating sample magnetometer. With the calcination temperature increased up to 1,000 °C for 2 h or the holding time prolonged to 12 h at 900 °C, the Sr0.8La0.2Zn0.2Fe11.8O19 particles gradually grow into a hexagonal elongated plate-like morphology due to the dimensional control along the nanofiber length. These elongated plate-like particles will be linked one by one to form the nanofiber with a necklace-like morphology. The magnetic properties of the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers are closely related to grain sizes, impurities and defects in the ferrite, which are influenced by the calcination temperature, holding time and heating rate. After calcined at 900 °C for 12 h with a heating rate of 3 °C/min, the optimized magnetic properties are achieved with the specific saturation magnetization 75.0 A m2 kg−1 and coercivity 426.3 kA m−1 for the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers.  相似文献   

2.
A novel photocatalytic material (Pt,Cd0.8Zn0.2S)/HLaNb2O7 was fabricated by successive intercalation and exchange reactions. The (Pt,Cd0.8Zn0.2S)/HLaNb2O7 possessed a gallery height less than 0.5 nm and showed a broad absorption with wavelength over 370―500 nm. Using (Pt,Cd0.8Zn0.2S)/HLaNb2O7 as catalyst, the photocatalytic H2 evolution was more than 160 cm3·h-1·g-1 in the presence of Na2S as a sacrificial agent under irradiation with wavelength more than 290 nm from a 100-W mercury lamp. Furthermore, the catalyst showed photocatalytic activity even under visible light irradiation.  相似文献   

3.
Noble metal-free, Cd1 − x Zn x S-based photocatalysts for hydrogen evolution from aqueous solutions of sodium sulfide and sodium sulfite upon irradiation with visible light (λ > 420 nm) have been synthesized and characterized by a complex of physicochemical methods. The effects of pH and catalyst and substrate concentrations on the rate of photocatalytic hydrogen evolution have been investigated. Under the optimal conditions, the quantum efficiency of the process is up to 12.9%.  相似文献   

4.
The activity and stability of Me/Cd0.3Zn0.7S (Me = Au, Pt, Pd) photocatalysts in the course of hydrogen production from water under the action of visible radiation have been investigated. The mechanism of activation and deactivation of the catalysts have been elucidated for the first time using X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. An increase in the hydrogen evolution rate is observed for all of the catalysts at the early stages of testing. The highest hydrogen evolution rate, 5.4 μmol/min, is afforded by the 1%Pt/Cd0.3Zn0.7S catalyst. The activity of the Au/Cd0.3Zn0.7S and Pt/Cd0.3Zn0.7S catalysts becomes constant 7.5–9 h after the beginning of the photocatalytic test, while in the case of Pd/Cd0.3Zn0.7S the hydrogen evolution rate increases over the initial 6 h and then decreases. These specific features of the catalysts likely correlate with the initial state of the metals on the support surface. In particular, supported palladium is in the form of PdO, while gold and platinum are in the metallic state. The Au/Cd0.3Zn0.7S and Pt/Cd0.3Zn0.7S photocatalysts are activated due to metal encapsulation; the 1%Pd/Cd0.3Zn0.7S catalyst, due to the partial reduction of PdO to PdO x . The 1%Pd/Cd0.3Zn0.7S catalyst is deactivated because of the aggregation of nanoparticles of the cadmium sulfide–zinc sulfide solid solution.  相似文献   

5.
Bi2FeVO7 was prepared by a solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi2FeVO7 were studied. The results shows that this compound crystallized in the tetragonal crystal system with space group I4/mmm. Moreover, the band gap of Bi2FeVO7 was estimated to be about 2.22(6) eV. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2FeVO7 as the photocatalyst by ultraviolet light irradiation. Degradation of aqueous methylene blue (MB) dye by photocatalytic way over this compound was further studied under visible light irradiation. Bi2FeVO7 shows higher catalytic activity compared to TiO2 (P-25) for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was realized after visible light irradiation for 170 min with Bi2FeVO7 as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 revealed the continuous mineralization of aqueous MB during the photocatalytic course.  相似文献   

6.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

7.
The efficiency of TiO2 (Degussa P-25) modified with an alkaline admixture (urea, BaO), sulfuric acid, or platinum in the photocatalytic oxidation of NO (50 ppm) with a flowing 7% O2 + N2 mixture under UV irradiation in a flow reactor at room temperature and atmospheric pressure is reported. Because of the progressive blocking of active sites of the photocatalyst by the reaction products (NO2, NO3), it is impossible to realize prolonged continuous removal of NO x (NO + NO2) from air without catalyst regeneration at elevated temperatures. The efficiency of the photocatalysts is characterized by specific photoadsorption capacity (SPC) calculated from the total amount of NO x adsorbed during 2-h-long irradiation. Modification of TiO2 with 5% BaO or 5% urea raises the SPC of the catalyst by a factor of 2–3. Presumably, this promoting effect is due to the basic properties of these dopants, which readily sorb NO2 and NO3. A considerable favorable effect on SPC is also attained by adding 0.5% Pt to (5% BaO)/TiO2. The SPC of the (0.5% Pt)/TiO2 catalyst depends on the state of the platinum. The samples calcined in air at 500°C, which contain Pt+ and Pt2+, have an approximately 2 times higher SPC than unpromoted TiO2 and ensure a much larger NO2/NO ratio at the reactor outlet. Conversely, the samples reduced in an H2 atmosphere at 200°C, whose platinum is in the Pt0 state, show a lower SPC than the initial TiO2 and cause no significant change in the NO2/NO ratio.  相似文献   

8.
Phase relations in the Zn2V2O7-Cu2V2O7 system were studied by high-temperature X-ray diffraction and differential thermal analysis. The major phase constituents of the system are solid solutions based on Zn2V2O7 and Cu2V2O7 polymorphs and their coexistence regions. The generation of α-Zn2 − 2x Cu2x V2O7 solid solution, where 0 ≤ x ≤ 0.30, leaves almost unchanged the stabilization temperature of the high-temperature zinc pyrovanadate phase. The α-Cu2 − 2x Zn2x V2O7 homogeneity range is 5 mol % Zn2V2O7. In the range 0.050 ≤ x ≤ 0.09 from 20 to ∼ 620°C, there is the two-phase field of α-Cu2V2O7 and β-Cu2V2O7 base solid solutions. At still higher temperatures, β-Zn2 − 2x Cu2x V2O7 and α-Cu2 − 2x Zn2x V2O7 coexist in the mixed-phase region. β-Zn2 − 2x Cu2x V2O7 solid solution, where 0 ≤ x ≤ 0.30, exists above 610 ± 5°C. The extent of the β′-Cu2V2O7-base solid solution is 9 to 65 mol % Zn2V2O7 at 615 ± 5°C, expanding to 0 mol % Zn2V2O7 with rising temperature. Original Russian Text ¢ T.I. Krasnenko, M.V. Rotermel’, S.A. Petrova, R.G. Zakharov, O.V. Sivtsova, A.N. Chvanova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 10, pp. 1755–1762.  相似文献   

9.
Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g?1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.  相似文献   

10.
The luminescent characteristics of CdxZn1−xS nanoparticles were studied. It was shown that the emission is due to the recombination of holes in the valence band with electrons captured by two sorts of traps, of which the traps with lower energy were ascribed to the surface states of the CdxZn1−xS nanoparticles. It was established that the CdxZn1−xS nanoparticles have more pronounced ability than CdS nanoparticles to accumulate excess negative charge under the conditions of pulsed irradiation. It was shown that the consumption of the photogenerated electrons in nanosecond and microsecond time scales involves the participation of one and the same electron traps. It was established that the rate of interaction of the electrons captured by the surface traps with oxygen increases with decrease in the size of the nanoparticles. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 275–281, September–October, 2007.  相似文献   

11.
The influence of the alumina support on the catalytic activity of Pt/Al2O3 catalysts in aqueous phase reforming of ethylene glycol to hydrogen was studied. The catalysts were prepared by impregnation of γ-, δ-, and α-alumina with H2PtCl6. The highest rate of hydrogen production (452 μmol min−1 g−1) obtained with the Pt/α-Al2O3 catalyst can be related to the highest extent of dispersion of Pt on α-Al2O3. XPS, TEM-EDX and TPR-H2 measurements showed the absence of chloride-containing surface complexes in the Pt/α-Al2O3 catalyst. However, chloride-containing entities were found on the surface of Pt/γ-Al2O3 and Pr/δ-Al2O3 catalysts. When chloride ions are removed chlorinated Pt species facilitate the sintering of Pt crystallites and in this way affect the extent of Pt dispersion. Moreover, depending upon the particular crystalline form, alumina atoms have different coordination and alumina surfaces contain varying amounts of OH groups of different nature which affect the interaction between Pt and the support.  相似文献   

12.
The catalytic activity in the oxidation of hydrogen (in the gaseous state in the presence of excess oxygen) has been studied for samples of Pt(Pd)/Ta2O5−x, formed by reduction with hydrogen. The samples obtained had greater activity than the traditional catalysts Pt(Pd)/Al2O3. According to X-ray diffraction analysis and electron microscopic studies, Ta2O5−x becomes amorphous with the formation of more reduced non-stoichiometric oxygen-deficient tantalum oxides with a surface layer of catalyst. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 3, pp. 180–185, May–June, 2008.  相似文献   

13.
Homogeneous manganocolumbite (MnNb2O6) was synthesized from Nb2O5 and MnO oxides. Powder sample was orthorhombic with unit cell parameters: α = 0.5766 nm, b = 1.4439 nm, c = 0.5085 nm and V = 0.4234 nm3. Heat capacity over the temperature range of 313–1253 K was measured in an inert atmosphere with combined thermogravimetry and calorimetry using NETZSCH STA 449C Jupiter thermoanalyzer. Melting point was 1767 ± 3 K, enthalpy of melting was 144 ± 4 kJ mol−1. Experimental heat capacity of MnNb2O6 is fitted to polynomial C pm = 221.46 + 3.03 · 10−3 T + −39.79 · 105 T −2 + 40.59 · 10−6 T 2.  相似文献   

14.
A new phase Cd4Fe7+xV9+xO37+4x, where −0.5<x<1.5, has been obtained in the solid-state in the FeVO4−Cd4V2O9 system. The temperature of incongruent melting and the unit cell volume of this phase decrease with decreasing the content of cadmium. The IR spectrum and SEM image of the new phase are presented.  相似文献   

15.
The compound [Ni(NH3)6][VO(O2)2(NH3)]2 was prepared and characterized by elemental analysis and vibrational spectra. The single crystal X-ray study revealed that the structure consists of [Ni(NH3)6]2+ and [VO(O2)2(NH3)] ions. As a result of weak interionic interactions V′···Op (Op-peroxo oxygen), ([VO(O2)2(NH3)])2 dimers are formed in the solid-state. The thermal decomposition of [Ni(NH3)6][VO(O2)2(NH3)]2 is a multi-step process with overlapped individual steps; no defined intermediates were obtained. The final solid products of thermal decomposition up to 600°C were Ni2V2O7 and V2O5.  相似文献   

16.
Compound Zn2SnO4 was synthesized by a hydrothermal method in which SnCl4 · 5H2O, ZnCl2 and N2H4 · H2O were used as reactants. Composite Zn2SnO4/C was then synthesized through a carbothermic reduction process using the as-prepared Zn2SnO4 and glucose as reactants. Comparing to the pure Zn2SnO4, some improved electrochemical properties were obtained for composite Zn2SnO4/C. When doped with 15% glucose, the composite Zn2SnO4/C showed the best electrochemical performance. Its first discharge capacity was about 1500 mA h g−1, with a capacity retain of 500 mA h g−1 in the 40th cycle at a constant current density of 100 mA/g in the voltage range of 0.05–3.0 V. There were also some differences displayed in their cyclic voltammogram.  相似文献   

17.
YBaCo4O7 compound is capable to intake and release a large amount of oxygen in the temperature range of 200–400°C. In the present study, the effect of Zn, Ga and Fe substitution for Co on the oxygen adsorption/desorption properties of YBaCo4O7 were investigated by thermogravimetry (TG) method. Due to fixed oxidation state of Zn2+ ions, the substitution of Zn2+ for Co2+ suppresses the oxygen adsorption of YBaCo4−xZnxO7. The substitution of Ga3+ for Co3+ also decreases the oxygen absorption capacity of YBaCo4−xGaxO7. This can be explained by the strong affinity of Ga3+ ions towards the GaO4 tetrahedron. Compared with Zn- and Ga-substituted samples, the drop of oxygen adsorption capacity is smallest for Fe-substituted samples because of the similar changeability of oxidation states of Co and Fe ions.  相似文献   

18.
Data obtained for the kinetics of oxidation of diethyl sulfide (Et2S) by hydrogen peroxide in aqueous solution catalyzed by boric acid indicate that monoperoxoborates B(O2H)(OH) 3 and diperoxoborates B(O2H)2(OH) 2 are the active species. The rates of the reactions of Et2S with B(O2H)(OH) 3 and B(O2H)2(OH) 2 are 2.5 and 100 times greater than with H2O2. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 1, pp. 38–42, January–February, 2007.  相似文献   

19.
Nanosized ZnNb2O6 photocatalysts (band gaps ~4.0 eV) were successfully synthesized via a citrate complex method. Their particle sizes ranged from 50 to 150 nm. The result of Mott–Schottky measurement revealed that the flat-band potential of ZnNb2O6 was ca. −1.3 V versus Ag/AgCl at pH 6.6. The photocatalytic activities of the samples for the degradation of methyl orange were evaluated under UV-light (λ = 254 nm). It was found that the sample obtained at 850 °C showed the highest photocatalytic activity due to its opportune crystallinity and surface area. Furthermore, ·OH radicals were detected as the major oxidation agents responsible for the decomposition of methyl orange.  相似文献   

20.
Specific features of the formation of a Pt(Cu) catalyst by the galvanic displacement of electroplated copper (carbon support) in a PtCl42− solution are considered. The composition, the structure, and electrochemical properties of Pt(Cu) deposits in different stages of displacement are studied by a complex of methods (SEM, TEM, XPS, voltammetry, etc.). The gradual formation of a stable “core(Pt, Cu)-shell(Pt)” structure with the average atomic ratio Pt : Cu ≈ 3 : 1 is observed. The results for PtCl42− are compared with the analogous results for PtCl62− published earlier. Particularly, the reasons for the differences in the steady state potentials established on the Pt(Cu)st/C electrode in the presence of PtCl42− and PtCl62− are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号