首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
采用全原子分子动力学模拟方法研究了纤连蛋白(FN)在金红石表面、23%石墨烯覆盖率的金红石表面、92%石墨烯覆盖率的金红石表面、石墨表面的吸附行为.模拟结果表明:FN在金红石表面吸附不稳定.通过石墨烯修饰二氧化钛表面可降低金红石表面的亲水性;当表面含有石墨烯层时,FN都将稳定地吸附在表面上.在23%石墨烯覆盖率的金红石表面上,FN的特异性识别位点朝向溶液而有利于整合素识别.DSSP分析结果显示在40 ns的分子动力学模拟过程中,FN的七个β-折叠结构在所有体系中均没有发生太大变化.由于有石墨烯层存在,表面附近水分子层密度减小.FN的表面吸附能随着表面石墨烯覆盖率的增加而增大.石墨烯修饰能加强二氧化钛表面对蛋白质的吸附.本工作可以为移植体修饰生物材料设计与开发提供参考.  相似文献   

2.
利用基于密度泛函理论的第一性原理计算了空位和B替位掺杂对Si在石墨烯上吸附的影响. 结果表明: 对完整的石墨烯结构, Si吸附在桥位最稳定, Si吸附改变了石墨烯中C原子的自旋性质; 空位和B替位掺杂均加强了Si在缺陷处的吸附, 空位对Si在石墨烯上吸附的影响相对较大; B掺杂改变了Si的稳定吸附位置(由桥位移到顶位); Si在空位和B掺杂石墨烯上吸附, 体系不具有磁性; B掺杂提高了石墨烯体系的导电性能; 单空位缺陷不易形成, 结构不稳定, B掺杂结构相对较稳定.  相似文献   

3.
随着核能的发展,放射性废水的处理成为亟待解决的环境问题之一,是人们广泛关注的焦点.放射性核素铀具有强化学毒性及放射性,从放射性废液中去除铀元素在环境保护方面具有重要的意义.近年来,石墨烯基材料由于其优良的性能被广泛应用于放射性废水的处理中.本文从理论角度构建了12种N、P、S掺杂石墨烯模型,模拟环境中铀酰离子与掺杂石墨烯材料的相互作用,探讨其相互作用的内在机理.基于密度泛函理论,对不同吸附位点(U或铀酰轴向氧原子O_(ax))的24种掺杂石墨烯/铀酰吸附体系进行了几何构型、吸附能、差分电荷密度、振动频率等方面的理论计算和相关分析,探讨了两者的相互作用机制,研究发现:(1)铀酰在N、P、S掺杂石墨烯表面吸附时主要的作用位点为其轴向氧原子(O_(ax));(2)同时,在吸附过程中,铀酰中的配位水分子发挥很重要的作用;(3) PS共掺杂石墨烯对铀酰的吸附性能最好,最大的吸附能为38.40 kcal/mol;(4)双元素掺杂石墨烯对铀酰的吸附能力明显高于单元素掺杂石墨烯.本文的研究为新型放射性废水处理材料的设计开拓了新的视野,提供了一定的理论依据.  相似文献   

4.
采用分子动力学方法研究了亚甲基蓝在不同氧化度的氧化石墨烯表面的吸附行为及其动力学性质, 从微观角度讨论了亚甲基蓝由体相到氧化石墨烯表面的吸附过程及主要作用机制, 并通过亚甲基蓝分子动力学性质解释了氧化石墨烯的氧化度和含氧官能团类型对吸附行为的影响. 结果表明, 吸附过程中, 亚甲基蓝主要受氧化石墨烯表面含氧官能团的静电作用, 以近似垂直氧化石墨烯表面的方向进入, 并以平行的方式吸附于氧化石墨烯表面; 亚甲基蓝不易脱离高氧化度氧化石墨烯的吸附位点; 吸附平衡过程中, 相对于低氧化度的氧化石墨烯, 高氧化度氧化石墨烯对亚甲基蓝的束缚性更强, 同时与亚甲基蓝间相互作用更强; 含氧官能团中的环氧基与亚甲基蓝间的作用势能更强, 且羟基能够与亚甲基蓝间形成氢键结构, 共同保障了亚甲基蓝吸附层的稳定性.  相似文献   

5.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析. 缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附. 计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

6.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析.缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附.计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

7.
对于传统整体催化剂而言,堇青石等基体比表面积低,往往需先涂覆活性氧化铝等高比表面涂层,此外低温催化燃烧反应生成的水和周围空气中的水分会大量吸附于亲水性氧化物涂层表面,导致贵金属催化活性降低,同时,贵金属的分散度也是影响催化剂活性的主要因素.我们利用石墨烯高疏水性、二维平面结构、对苯环强吸附及对贵金属颗粒的高分散与锚定作用等独特性能,发展基于石墨烯涂层的高活性纳米Pd整体催化剂,以改善上述问题.所制备的Pd/石墨烯/堇青石(Pd/Gr/Cor)复合材料作为整体催化剂用于甲苯低温燃烧反应,通过考察催化性能和吸附行为,重点研究了石墨烯涂层的作用.催化性能结果表明,与无石墨烯涂层的传统Pd/Cor催化剂相比,Pd/Gr/Cor催化剂对甲苯的起燃温度从175℃降至132℃,且在水蒸气存在的情况下表现出更好的稳定性.TEM和吸水速率表征表明,石墨烯涂层可显著提高Pd纳米粒子的分散性,提高堇青石载体的疏水性.动力学研究表明,Pd/Gr/Cor催化剂上甲苯催化燃烧符合一级反应动力学规律,活化能为60.93 k J/mol.此外,研究了其吸附行为,包括吸附等温线,吸附动力学和吸附热力学.模拟结果表明,Pd/Gr/Cor催化剂对甲苯具有优异的吸附性能,对甲苯的吸附符合Freundlich模型,为化学吸附.FLm双点位吸附模型表明,石墨烯表面吸附了大量的甲苯,而Pd粒子表面吸附的甲苯相对较少,但亲和力较强.吸附热力学计算表明,石墨烯对甲苯的吸附是一个自发的放热反应,是一个熵减小的过程,表明甲苯分子可在石墨烯上高度有序组装.石墨烯与Pd之间的显著浓度差和亲和力的差距确保了反应过程中甲苯在石墨烯上的快速转移.吸附动力学研究表明,催化剂对甲苯的吸附为快速过程,催化反应为控速步骤.综上,石墨烯涂层不仅可以提高Pd纳米粒子的分散性,提高催化剂的疏水性,在催化反应过程中,还可利用其强吸附能力提高催化剂表面的甲苯浓度,而显著的浓度差和亲和力的差距可作为驱动力为Pd粒子提供甲苯,从而发挥吸附-催化协同作用优势,进一步提高催化性能.  相似文献   

8.
利用分子动力学方法,模拟石墨烯/聚乙烯复合材料的微观结构和性能,并采用单轴拉伸模拟方法研究石墨烯/聚乙烯复合材料的拉伸性能.结果表明,在石墨烯/聚乙烯复合材料平衡构型中,聚乙烯基体分子在石墨烯表面处形成多层吸附层,吸附层处于动态稳定状态,层内分子可以发生扩散迁移.吸附层内聚乙烯分子发生"吸附固化"现象,分子弯曲程度减弱,发生有序排列,且在垂直于石墨烯方向的运动性能受到抑制.拉伸模拟结果表明,石墨烯能够提高聚乙烯材料的拉伸性能.在弹性区和屈服区,石墨烯阻碍了复合材料在垂直于拉伸方向的压缩变形,聚乙烯分子"吸附固化"结构保持稳定,引起体系整体应力的迅速升高.在软化区,由于石墨烯发生剧烈弯曲,"吸附固化"结构发生破坏,最终引起体系应力迅速减小.在弹性区和屈服区,体系应变主要引起了非键相互作用的改变.在软化区之后,应变主要导致了体系内分子成键相互作用的改变.应变速率能够提高复合材料的屈服应力,而不改变复合材料应力应变的整体趋势.  相似文献   

9.
姜哲  于飞  马杰 《物理化学学报》2019,35(7):709-724
抗生素的大量使用,所带来的环境污染问题受到广泛关注。吸附法因去除效率高、普遍适用性强,呈现出广阔的应用前景,开发新型吸附剂是高效能吸附处理的关键。近年来石墨烯优良的物理和化学性质以及吸附性能,使其成为重要的抗生素吸附剂。由于石墨烯自身的局限性以及对石墨烯吸附剂处理效能和稳定性的要求,基于石墨烯设计开发了多种石墨烯基吸附材料。而目前基于水体中抗生素的石墨烯基复合材料的设计、合成及其吸附作用机制缺乏相关的系统性综述。本文综述了目前水体中抗生素的危害,针对石墨烯基复合吸附材料中,广泛关注的磁性石墨烯吸附剂、聚合物/石墨烯吸附剂、三维石墨烯凝胶和石墨烯/生物炭吸附剂的设计和制备方法进行了总结和概述,并阐述了石墨烯基吸附材料对水体中抗生素的主要吸附作用机制。最后,本文对石墨烯基吸附材料去除水体中抗生素未来的发展方向进行了展望。  相似文献   

10.
石墨烯及其复合材料在水处理中的应用   总被引:2,自引:0,他引:2  
石墨烯(graphene,GE)是一种由sp2杂化的碳原子以六边形排列形成的周期性蜂窝状二维碳质新材料,具有比表面积大、电子迁移率高和化学稳定性强等特性。本文重点总结了近年来石墨烯及其复合材料应用于水处理吸附剂及光催化剂两个方面的研究进展。石墨烯及其复合材料对于处理重金属、有机污染物等污染物质的吸附效果好,吸附容量高;与光催化材料结合后,石墨烯由于其独特的物理化学特性有效增强了复合材料的光催化特性。最后对各种石墨烯及其复合材料在水处理中的应用作出了评价,同时对它们在水处理中的应用前景做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号