首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Enzyme‐responsive hydrogels have great potential in applications of controlled drug release, tissue engineering, etc. In this study, we reported on a supramolecular hydrogel that showed responses to two enzymes, phosphatase which was used to form the hydrogels and esterase which could trigger gel‐sol phase transitions. The gelation process and visco‐elasticity property of the resulting gel, morphology of the nanostructures in hydrogel, and peptide conformation in the self‐assembled nanostructure were characterized by rheology, transmission electron microscope (TEM), and circular dichroism (CD), respectively. Potential application of the enzyme‐responsive hydrogel in drug release was also demonstrated in this study. Though only one potential application of drug release was proved in this study, the responsive hydrogel system in this study might have potentials for the applications in fields of cell culture, controlled‐drug release, etc.  相似文献   

2.
With the ever-increasing demands for personalized drugs, disease-specific and condition-dependent drug delivery systems, four-dimensional (4D) printing can be used as a new approach to develop drug capsules that display unique advantages of self-changing drug release behavior according to the actual physiological circumstances. Herein, a plant stomata-inspired smart hydrogel capsule was developed using an extrusion-based 4D printing method, which featured with UV cross-linked poly(N-isopropylacrylamide) (PNIPAM) hydrogel as the capsule shell. The lower critical solution temperature (LCST) of the PNIPAM hydrogels was approximately 34.9 °C and macroporous PNIPAM hydrogels were prepared with higher molecular weight polyethylene glycols (PEGs) as the pore-forming agents. Owing to the LCST-induced shrinking/swelling properties, the prepared PNIPAM hydrogel capsules exhibited temperature-responsive drug release along with the microstructure changes in the PNIPAM hydrogels. The in vitro drug release test confirmed that the PNIPAM hydrogel capsules can autonomously control their drug release behaviors on the basis of ambient temperature changes. Moreover, the increased PEG molecular weights in the macroporous PNIPAM hydrogel capsules caused an obvious improvement of drug release rate, distinctly indicating that the drug release profiles can be well programmed by adjusting the internal pore size of the hydrogel capsules. In vitro biocompatibility studies confirmed that the PNIPAM hydrogel capsules have great potential for biomedical applications. The bioinspired 4D printed hydrogel capsules pioneer the paradigm of smart controlled drug release.  相似文献   

3.
Rat-mouse and mouse-mouse hybridoma cell lines were used for formation of monoclonal antibodies (MAbs) in microcapsules of different sizes. Microcapsules were made of poly L-lysine-alginate hydrogel membranes. The effects of extracapsule liquid film, intra-capsule and transmembrane transfer limitations of nutrients/products on system’s performance were investigated. An agitation speed of 45 rpm (4 cm/s tip speed) was found to be optimal in spinner flasks to overcome liquid film resistances around capsules. Capsule sizes need to be reduced to smaller than 350 ε in order to eliminate intracapsule transfer limitations with a typical initial viable cell concentration of 0.5x105 viable cells/mL capsule. Double coating of capsules to improve strength of capsules resulted in higher transmembrane transfer resistances.  相似文献   

4.
We present a novel type of ultrathin hydrogel microcapsules with pH-triggered shape switch. The capsules are produced as hollow hydrogel replicas of cubical inorganic templates and capable of keeping cubical geometries at neutral pH but transform into bulged structures at basic pH.  相似文献   

5.
《Electrophoresis》2017,38(9-10):1318-1324
We developed the photo‐crosslinkable hydrogel microfluidic co‐culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi‐permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co‐culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)‐treated GelMA hydrogel‐embedding microchannels. The main advantage of this hydrogel microfluidic co‐culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod‐mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co‐culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications.  相似文献   

6.
以三聚氰胺甲醛(MF)微粒为模板,采用逐层静电自组装技术交替吸附聚苯乙烯磺酸钠(PSS)和聚烯丙基胺盐酸盐(PAH),得到具有核壳结构的复合式微球,然后通过pH=1的盐酸溶液除去中心模板,得到直径约为3~4μm的空腔胶囊.使用藻红蛋白作为探针分子,通过比较空腔胶囊装载前后荧光强度的变化,发现pH在4~5之间时,胶囊呈现最大的蛋白装载量.pH在6~10的范围内,藻红蛋白在胶囊上的装载量几乎不变.pH3时,装载能力很差.此外,通过荧光共聚焦显微镜对不同pH条件下的蛋白装载规律进行了成像分析.一部分藻红蛋白在pH=4的条件下通过扩散进入了胶囊的内部,而pH=7的条件下,藻红蛋白不进入胶囊内部,而是吸附在表面.  相似文献   

7.
Host–guest assembly in droplet-based microfluidics opens a new avenue for fabricating supramolecular hydrogel microcapsules with high monodispersity and controlled functionality. In this paper, we demonstrate a single emulsion microdroplet platform to prepare microcapsules with supramolecular hydrogel skins from host molecule cucurbit[8]uril and guest polymer anthracene-functionalized hydroxyethyl cellulose. In contrast to construction of microcapsules from a droplet-in-droplet double emulsion, here the electrostatic attraction between charged polymer and surfactant facilitates formation of defined supramolecular hydrogel skins in a single emulsion. Furthermore, by taking advantage of dynamic interactions and the tunable cross-linked supramolecular hydrogel network, it is possible to prepare microcapsules with triggered and UV-controlled molecular permeability. These could be potentially used in a delivery system for e.g. agrochemicals, nutraceuticals or cosmetics.  相似文献   

8.
Anti‐cancer drug daunorubicin (DNR) was encapsulated in preformed multilayer microcapsules and was applied in tumor treatment by in vitro cell culture and in vivo animal experiments. The microcapsules were fabricated by an alternate deposition of oppositely charged polysaccharides, i.e. chitosan and alginate onto carboxymethyl cellulose (CMC) doped CaCO3 colloidal particles in a sequential assembly procedure, followed by crosslinking of the capsule shells with glutaraldehyde (GA) and removal of the templates by disodium ethylenediaminetetraacetic acid (EDTA). The as‐prepared microcapsules showed strong ability to induce the positively charged DNR to deposit into the microcapsule interiors. Confocal microscopy and transmission electron microscopy observed homogeneous distribution of the drug within microcapsules. The loaded DNR could be released again, following a diffusion‐controlled model at the initial stage. In vitro experiments demonstrated that the encapsulated DNR can effectively induce the apoptosis of BEL‐7402 tumor cells, as evidenced by various microscopy techniques after acridine orange (AO), Hoechst 33342, and osmium tetraoxide staining. By seeding the BEL‐7402 hepatoma cells into BALB/c/nu mice, tumors were created for the animal experiments. The results showed that the encapsulated DNR had better efficacy than that of the free drug in terms of tumor inhibition in a 4 week in vivo culture period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
We report dual pH‐responsive microcapsules manufactured by combining electrostatic droplets (ESD) and microfluidic droplets (MFD) techniques to produce monodisperse core (alginate)‐shell (chitosan) structure with dual pH‐responsive drug release function. The fabricated core‐shell microcapsules were size controllable by tuning the synthesis parameters of the ESD and MFD systems, and were responsive in both acidic and alkaline environment, We used two model drugs (ampicillin loaded in the chitosan shell and diclofenac loaded in the alginate core) for drug delivery study. The results show that core‐shell structure microcapsules have better drug release efficiency than respective core or shell particles. A biocompatibility test showed that the core‐shell structure microcapsules presented positive cell viability (above 80%) when evaluated by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The results indicate that the synthesized core‐shell microcapsules were a potential candidate of dual‐drug carriers.  相似文献   

10.
Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be “intelligent”, such that they can deliver their payload at a well‐defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer‐by‐layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.  相似文献   

11.
A folic acid targeted mixed micelle system based on co‐assembly of poly(ε‐caprolactone)‐b‐poly(methoxytri(ethylene glycol) methacrylate‐coN‐(2‐methacrylamido)ethyl folatic amide) and poly(ε‐caprolactone)‐b‐poly(diethylene glycol monomethyl ether methacrylate) is developed to encapsulate indocyanine green (ICG) for photothermal therapy and photodynamic therapy. In this study, the use of folic acid is not only for specific cancer cell recognition, but also in virtue of the carboxylic acid on folic acid to regulate the pH‐dependent thermal phase transition of polymeric micelles for controlled drug release. The prepared ICG‐loaded mixed micelles possess several superior properties such as a preferable thermoresponsive behavior, excellent storage stability, and good local hyperthermia and reactive oxygen species generation under near‐infrared (NIR) irradiation. The photototoxicity induced by the ICG‐loaded micelles has efficiently suppressed the growth of HeLa cells (folate receptor positive cells) under NIR irradiation compared to that of HT‐29, which has low folate receptor expression. Hence, this new type of mixed micelles with excellent features could be a promising delivery system for controlled drug release, effective cancer cell targeting, and photoactivated therapy.  相似文献   

12.
Microcapsules obtained by layer‐by‐layer assembly provide a good platform for biological analysis owing to their component diversity, multiple binding sites, and controllable wall thickness. Herein, different assembly species were obtained from two‐photon dyes and traditional photosensitizers, and further assembled into microcapsules. Fluorescence resonance energy transfer (FRET) was shown to occur between the two‐photon dyes and photosensitizers. Confocal laser scanning microscopy (CLSM) with one‐ and two‐photon lasers, fluorescence lifetime imaging microscopy (FLIM), and time‐resolved fluorescence spectroscopy were used to analyze the FRET effects in the microcapsules. The FRET efficiency could easily be controlled through changing the assembly sequence. Furthermore, the capsules are phototoxic upon one‐ or two‐photon excitation. These materials are thus expected to be applicable in two‐photon‐activated photodynamic therapy for deep‐tissue treatment.  相似文献   

13.
We report a self‐propelled Janus silica micromotor as a motion‐based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self‐propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s?1. Biotin‐functionalized Janus micromotors can specifically capture and rapidly transport streptavidin‐modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self‐propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab‐on‐chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.  相似文献   

14.
Hollow microcapsules containing polymeric micelles in their walls were fabricated by alternating assembly of poly(allylamine hydrochloride) (PAH) and poly(styrene- b-acrylic acid) (PS- b-PAA) micelles on MnCO(3) microparticles followed by sacrificing the templates in acid solution. The successful formation of PAH/micelle multilayers on both planar and curved substrates was confirmed by UV-vis spectroscopy, ellipsometry, and xi-potential measurements. The PS- b-PAA micelles retained their structure during the whole assembly process. The as-prepared microcapsules showed extraordinary stability against concentrated HCl (37%) and 0.1 M NaOH solutions. No variation in capsule size or shape was observed in acidic solution, while slight swelling and distortion of the capsules took place in alkaline solution. However, these capsules completely recovered their original size and morphology after being incubated in acidic solution again. The microcapsules, in which large voids exist between the micelle grains on the walls, were totally permeable to fluorescein-tagged dextran with an M(w) of 2000 kDa. Assembly of additional PAH/poly(sodium 4-styrenesulfonate) multilayers could substantially reduce the permeation of the same molecules. These multicompartmental capsules combine polymeric micelles with multilayer polyelectrolyte microcapsules and could possibly be imparted with multifunctions, thus possibly finding diverse applications in the fields of drug delivery, biosensing, and nanobiotechnology.  相似文献   

15.
Herein, we propose a drug‐free approach to cancer therapy that involves cancer cell targeting calcification (CCTC). Several types of cancer cells, such as HeLa cells, characterized by folate receptor (FR) overexpression, can selectively adsorb folate (FA) molecules and then concentrate Ca2+ locally to induce specific cell calcification. The resultant calcium mineral encapsulates the cancer cells, inducing their death, and in vivo assessments confirm that CCTC treatment can efficiently inhibit tumor growth and metastasis without damaging normal cells compared with conventional chemotherapy. Accordingly, CCTC remarkably improve the survival rate of tumor mice. Notably, both FA and calcium ions are essential ingredients in human metabolism, which means that CCTC is a successful drug‐free method for tumor therapy. This achievement may further represent an alternative cancer therapy characterized by selective calcification‐based substitution of sclerosis for tumor disease.  相似文献   

16.
The deformation and recovery behaviors of multilayer microcapsules were investigated after being forced to flow through a microchannel. The microchannel device with a constriction (5.7 μm in depth) in the middle was designed, and the multilayer microcapsules with different size and layer thickness (and thereby different mechanical strength) were used. Deformation in the microchannel was observed for all the capsules with a size larger than the constriction height, and its extent was mainly governed by the difference between capsule size and constriction height. The squeezed microcapsules could recover their original spherical shape when the deformation extent was smaller than 16%, whereas permanent physical deformation took place when the deformation extent was larger than 34%. The capsules filled with polyelectrolytes could greatly enhance their shape recovery ability due to the higher osmotic pressure in the capsule interior and could well maintain the preloaded low-molecular-weight dyes regardless of the squeezing.  相似文献   

17.
Herein is described a new modular platform for the construction of cancer‐cell‐targeting drug conjugates. Tripodal boronate complexes featuring reversible covalent bonds were designed to accommodate a cytotoxic drug (bortezomib), poly(ethylene glycol) (Peg) chains, and folate targeting units. The B‐complex core was assembled in one step, proved stable under biocompatible conditions, namely, in human plasma (half‐life up to 60 h), and underwent disassembly in the presence of glutathione (GSH). Stimulus‐responsive intracellular cargo delivery was confirmed by confocal fluorescence microscopy, and a mechanism for GSH‐induced B‐complex hydrolysis was proposed on the basis of mass spectrometry and DFT calculations. This platform enabled the modular construction of multivalent conjugates with high selectivity for folate‐positive MDA‐MB‐231 cancer cells and IC50 values in the nanomolar range.  相似文献   

18.
Polyurethane microcapsules were prepared by mini‐emulsion interfacial polymerization for encapsulation of phase‐change material (n‐docosane) for energy storage. Three steps were followed with the aim to optimize synthesis conditions of the microcapsules. First, polyurethane microcapsules based on silicone oil core as an inert template with different silicone oil/poly(ethylene glycol)/4,4′‐diphenylmethane diisocyanate wt % ratio were synthesized. The surface morphology of the capsules was analyzed by scanning electronic microscopy (SEM) and the chemical nature of the shell was monitored by Fourier transform infrared spectroscopy (FT‐IR). Capsules with the silicone oil/poly(ethylene glycol)/4,4′‐diphenylmethane diisocyanate 10/20/20 wt % ratio showed the best morphological features and shell stability with average particle size about 4 μm, and were selected for the microencapsulation of the n‐docosane. In the second stage, half of the composition of silicone oil was replaced with n‐docosane and, finally, the whole silicone oil content was replaced with docosane following the same synthetic procedure used for silicone oil containing capsules. Thermal and cycling stability of the capsules were investigated by thermal gravimetric analysis (TGA) and the phase‐change behavior was evaluated by differential scanning calorimetry (DSC).  相似文献   

19.
A folate‐conjugated copolymer PEG‐PLA‐PLL/folate was synthesized and mixed with pure PEG‐PLA‐PLL and a fluorescent model drug mFITC to prepare folate‐conjugated micelles. The distribution of micelles was studied on cancer‐cell‐bearing mice via frozen slicing. The r e sults show that mFITC is successfully encapsulated into folate(+) and folate(?)micelles; PEG‐PLA‐PLL micelles the latter can be internalized by both HeLa and CHO cells without selectivity due to their cationic surface charges, while folate(+)micelles exhibit more preferential endocytosis by HeLa cells than by CHO cells. The folate(?)micelles showed retention in both organs and tumors. The folate(+)micelles are a promising active targeting drug delivery system for FR over‐expressing cells and they accumulate in tumor beds.

  相似文献   


20.
Colloidal microcapsules (MCs) are highly modular, inherently multiscale constructs of capsules stabilized by nano‐/microparticle shells, with applications in many areas of materials and biological sciences, such as drug delivery, encapsulation, and microreactors. Until recently, fabrication of colloidal MCs focused on the use of submicron‐sized particles because the smaller nanoparticles (NPs) are inherently unstable at the interface owing to thermal disorder. However, stable microcapsules can now be obtained by tuning the interactions between the nanometer‐sized building blocks at the liquid–liquid interface. This Review highlights recent developments in the fabrication of colloidal MCs using NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号