首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
In the current work we investigated 3D-QSAR data by the use of the coupled leave-several-out (LSO) and leave-one-out (LOO) cross-validation (CV) procedures. We verified the above mentioned scheme using both simulated data and real 3D QSAR data describing a series of CoMFA steroids, heterocyclic azo dyes and styrylquinoline HIV integrase inhibitors. Unlike in standard analyses, this technique characterizes individual method not by a single performance metrics but screens a whole possible modeling space by sampling different molecules into the training and test sets, respectively. This allowed us for the discussion of the information included in the estimators validating cross-validation procedures, as well as the comparison of the efficiency of several 3D QSAR schemes, in particular, Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Surface Analysis (CoMSA). Moreover, it allows one to acquire some general knowledge about predictive and modeling ability in 3D QSAR method.  相似文献   

2.
For a data set with 30 direct azo dyes taken from literature, quantitative structure-activity relationship (QSAR) analyses have been performed to model the affinity of the dye molecules for the cellulose fiber. The electronic structure of the compounds was characterized using quantum chemical gas-phase (AM1) and continuum-solvation molecular orbital parameters. As regards the solution phase, COSMO appears to be better suited than SM2 in quantifying relative trends of the aqueous solvation energy. For the dye-fiber affinity, the leave-one-out prediction capability of multilinear regression equations is superior to CoMFA, with predictive squared correlation coefficients ranging from 0.63 (pure CoMFA) to 0.89. At the same time, solution-phase CoMFA is superior to previously derived AM1-based CoMFA models. As a general trend, the dye-fiber affinity increases with increasing electron donor capacity that corresponds to an increasing hydrogen bond acceptor strength of the azo dyes. The discussion includes the consideration of structural features that are likely to be involved in dye-fiber and dye-dye hydrogen bonding interactions, and possible links between CoMFA electrostatic results and the atomic charge distribution of the compounds.  相似文献   

3.
A variety of issues decide the efficiency of 3D QSAR methods, and their practical importance for drug design is still controversial. This refers both to the predictive ability and the possibility for the indication of these areas within 3D molecular representations that are responsible for biological or chemical effects. Technically, the latter comes down to the selection or elimination of the reliable variables during 3D QSAR modeling using the Partial Least-Squares (PLS) method. In this paper we used a series of benzoic acids to test the dependence between the predictive ability and variable selection performance of PLS with Iterative Variable Elimination (IVE-PLS) in the Comparative Molecular Surface Analysis (CoMSA) modeling of Hammett constant which correlates with the pKa values. Modeling this chemical effect allowed us to select the IVE-PLS variant that plots the contour maps indicating a carboxylic function, i.e., the region including the dissociation reaction center that determines the respective pKa values. In fact, it appeared that a novel robust IVE version is capable of the indication of the proper contour plots independent of the method used for the calculation of partial atomic charges (AM1 or Gasteiger-Marsili).  相似文献   

4.
5.
Eph receptor tyrosine kinases are divided on two subfamilies based on their affinity for ephrin ligands and play a crucial role in the intercellular processes such as angiogenesis, neurogenesis, and carcinogenesis. As such, Eph kinases represent potential targets for drug design, which requires the knowledge of structural features responsible for their specific interactions. To overcome the existing gap between available sequence and structure information we have built 3D models of eight ephrins and 13 Eph kinase ligand-binding domains using homology modeling techniques. The interaction energies for several molecular probes with binding sites of these models were calculated using GRID and subjected to chemometrical classification based on consensus principal component analysis (CPCA). Despite inherent limitations of the homology models, CPCA was able to successfully distinguish between ephrins and Eph kinases, between Eph kinase subfamilies, and between ephrin subfamilies. As a result we have identified several amino acids that may account for selectivity in ephrin-Eph kinase interactions. In general, although the difference in charge between ephrin and Eph kinase binding domains creates an attractive long-range electrostatic force, the hydrophobic and steric interactions are highly important for the short-range interactions between two proteins. The chemometrical analysis also provides the pharmacophore model, which could be used for virtual screening and de novo ligand design.  相似文献   

6.
ABSTRACT: In vitro antitumor evaluation of the synthesized 46 compounds of 3,5-diaryl-4,5-dihydropyrazoles against EAC cell lines and 3D QSAR study using pharmacophore and Comparative Molecular Field Analysis (CoMFA) methods were described. CoMFA derived QSAR model shows a good conventional squared correlation coefficient r2 and cross validated correlation coefficient r2 cv 0.896 and 0.568 respectively. In this analysis steric and electrostatic field contribute to the QSAR equation by 70% and 30% respectively, suggesting that variation in biological activity of the compounds is dominated by differences in steric (van der Waals) interactions. To visualize the CoMFA steric and electrostatic field from partial least squares (PLS) analysis, contour maps are plotted as percentage contribution to the QSAR equation and are associated with the differences in biological activity. BACKGROUND: Pyrazole derivatives exhibit a wide range of biological properties including promising antitumor activity. Furthermore, Aldol condensation assisted organic synthesis has delivered rapid routes to N-containing heterocycles, including pyrazoles. Combining these features, the use of chalconisation-assisted processes will provide rapid access to a targeted dihydropyrazoles library bearing a hydrazino 3D QSAR study using pharmacophore and Comparative Molecular Field Analysis (CoMFA) methods were described for evaluation of antioxidant properties. RESULTS: Chalcones promoted 1 of the 2 steps in a rapid, convergent synthesis of a small library of hydrazinyl pyrazole derivatives, all of which exhibited significant antitumor activity against Ehrlich Ascites Carcinoma (EAC) human tumor cell line comparable to that of the natural anticancer doxorubicin, as a reference standard during this study. In order to understand the observed pharmacological properties, quantitative structure-activity relationship (3D QSAR) study was initiated. CONCLUSIONS: Chalcones heating provides a rapid and expedient route to a series of pyrazoles to investigate their chracterization scavenging properties. Given their favorable properties, in comparison with known anticancer, these pyrazole derivatives are promising leads for further development and optimization.  相似文献   

7.
8.
9.
Rho Kinases (ROCK) has been found to regulate a wide range of fundamental cell functions such as contraction, motility, proliferation, and apoptosis. Recent experiments have defined new functions of ROCKs in cells, including centrosome positioning and cell-size regulation, which might contribute to various physiological and pathological states. In this study, we have performed pharmacophore modeling and 3D QSAR studies on a series of 36 indoles and 7-azoindoles derivatives as ROCK2 inhibitors to elucidate the structural variations with their inhibitory activities. Ligand based CoMFA and CoMSIA models were generated based on three different alignment methods such as systematic search, simulated annealing and pharmacophore. A total of 15 CoMFA models and 27 CoMSIA were generated using different alignments. One model from each alignment is selected based on the statistical values. Contour maps of the selected models were compared, analysed and reported. The 3D QSAR study revealed that electro positive group linked to the methoxy-benzene ring position of the structure will enhance the biological activity and bulkier substitutions are preferred in the methyl dihydroindole region. Also, it is found that the hydrogen bond donor substituted at the R1 position enhances the inhibitory activity. In future, this study would give proper guidelines to further enhance the activity of novel inhibitors for ROCK2.  相似文献   

10.
The three-dimensional (3D) superimposition of molecules of one biological target reflecting their relative bioactive orientation is key for several ligand-based drug design studies (e.g., QSAR studies, pharmacophore modeling). However, with the lack of sufficient ligand-protein complex structures, an experimental alignment is difficult or often impossible to obtain. Several computational 3D alignment tools have been developed by academic or commercial groups to address this challenge. Here, we present a new approach, MARS (Multiple Alignments by ROCS-based Similarity), that is based on the pairwise alignment of all molecules within the data set using the tool ROCS (Rapid Overlay of Chemical Structures). Each pairwise alignment is scored, and the results are captured in a score matrix. The ideal superimposition of the compounds in the set is then identified by the analysis of the score matrix building stepwise a superimposition of all molecules. The algorithm exploits similarities among all molecules in the data set to compute an optimal 3D alignment. This alignment tool presented here can be used for several applications, including pharmacophore model generation, 3D QSAR modeling, 3D clustering, identification of structural outliers, and addition of compounds to an already existing alignment. Case studies are shown, validating the 3D alignments for six different data sets.  相似文献   

11.
Based on the obtained data of half-lives(t1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predict the t1/2 values of the remaining 178 PCBs, using the structural parameters as independent variables and lgt1/2 values as the dependent variable. Among this process, the whole data set(31 compounds) was divided into a training set(24 compounds) for model generation and a test set(7 compounds) for model validation. Then, the full factor experimental design was used to research the potential second-order interactional effect between different substituent positions, obtaining the final regulation scheme for PCB. At last, a 3D QSAR pharmacophore model was established to validate the reasonable regulation targeting typical PCB with respect to half-lives and thermostability. As a result, the cross-validation correlation coefficient(q2) obtained by the 3D QSAR model was 0.845(>0.5) and the coefficient of determination(r2) obtained was 0.936(>0.9), indicating that the models were robust and predictive. CoMSIA analyses upon steric, electrostatic and hydrophobic fields were 0.7%, 85.9%, and 13.4%, respectively. The electrostatic field was determined to be a primary factor governing the t1/2. From CoMSIA contour maps, t1/2 increased when substi- tuents possessed electropositive groups at the 2'-, 3-, 3'-, 5- and 5'- positions and electronegative groups at the 3-, 3'-, 5-, 6- and 6'- positions, which could increase the PCB stability in transformer insulation oil. Modification of two typical PCB congeners(PCB-77 and PCB-81) showed that the lgt1/2for three selected modified compounds increased by 13%(average ratio) compared with that of each congener and the thermostability of them were higher, validating the reasonability of the regulatory scheme obtained from the 3D QSAR model. These results are expected to be beneficial in predicting t1/2 values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the stability of PCBs.  相似文献   

12.
We report the QSAR modeling of cytochrome P450 3A4 (CYP3A4) enzyme inhibition using four large data sets of in vitro data. These data sets consist of marketed drugs and drug-like compounds all tested in four assays measuring the inhibition of the metabolism of four different substrates by the CYP3A4 enzyme. The four probe substrates are benzyloxycoumarin, testosterone, benzyloxyresorufin, and midazolam. We first show that using state-of-the-art QSAR modeling approaches applied to only one of these four data sets does not lead to predictive models that would be useful for in silico filtering of chemical libraries. We then present the development and the testing of a multiple pharmacophore hypothesis (MPH) that is formulated as a conceptual extension of the traditional QSAR approach to modeling the promiscuous binding of a large variety of drugs to CYP3A4. In the simplest form, the MPH approach takes advantage of the multiple substrate data sets and identifies the binding of test compounds as either proximal or distal relative to that of a given substrate. Application of the approach to the in silico filtering of test compounds for potential inhibitors of CYP3A4 is also presented. In addition to an improvement in the QSAR modeling for the inhibition of CYP3A4, the results from this modeling approach provide structural insights into the drug-enzyme interactions. The existence of multiple inhibition data sets in the BioPrint database motivates the original development of the concept of a multiple pharmacophore hypothesis and provides a unique opportunity for formulating alternative strategies of QSAR modeling of the inhibition of the in vitro metabolism of CYP3A4.  相似文献   

13.
14.
15.
Topological fuzzy pharmacophore triplets (2D-FPT), using the number of interposed bonds to measure separation between the atoms representing pharmacophore types, were employed to establish and validate quantitative structure-activity relationships (QSAR). Thirteen data sets for which state-of-the-art QSAR models were reported in literature were revisited in order to benchmark 2D-FPT biological activity-explaining propensities. Linear and nonlinear QSAR models were constructed for each compound series (following the original author's splitting into training/validation subsets) with three different 2D-FPT versions, using the genetic algorithm-driven Stochastic QSAR sampler (SQS) to pick relevant triplets and fit their coefficients. 2D-FPT QSARs are computationally cheap, interpretable, and perform well in benchmarking. In a majority of cases (10/13), default 2D-FPT models validated better than or as well as the best among those reported, including 3D overlay-dependent approaches. Most of the analogues series, either unaffected by protonation equilibria or unambiguously adopting expected protonation states, were equally well described by rule- or pKa-based pharmacophore flagging. Thermolysin inhibitors represent a notable exception: pKa-based flagging boosts model quality, although--surprisingly--not due to proteolytic equilibrium effects. The optimal degree of 2D-FPT fuzziness is compound set dependent. This work further confirmed the higher robustness of nonlinear over linear SQS models. In spite of the wealth of studied sets, benchmarking is nevertheless flawed by low intraset diversity: a whole series of thereby caused artifacts were evidenced, implicitly raising questions about the way QSAR studies are conducted nowadays. An in-depth investigation of thrombin inhibition models revealed that some of the selected triplets make sense (one of these stands for a topological pharmacophore covering the P1 and P2 binding pockets). Nevertheless, equations were either unable to predict the activity of the structurally different ligands or tended to indiscriminately predict any compound outside the training family to be active. 2D-FPT QSARs do however not depend on any common scaffold required for molecule superimposition and may in principle be trained on hand of diverse sets, which is a must in order to obtain widely applicable models. Adding (assumed) inactives of various families for training enabled discovery of models that specifically recognize the structurally different actives.  相似文献   

16.
Quantitative structure–activity relationships (QSAR) methods are urgently needed for predicting ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties to select lead compounds for optimization at the early stage of drug discovery, and to screen drug candidates for clinical trials. Use of suitable QSAR models ultimately results in lesser time-cost and lower attrition rate during drug discovery and development. In the case of ADME/T parameters, drug metabolism is a key determinant of metabolic stability, drug–drug interactions, and drug toxicity. QSAR models for predicting drug metabolism have undergone significant advances recently. However, most of the models used lack sufficient interpretability and offer poor predictability for novel drugs. In this review, we describe some considerations to be taken into account by QSAR for modeling drug metabolism, such as the accuracy/consistency of the entire data set, representation and diversity of the training and test sets, and variable selection. We also describe some novel statistical techniques (ensemble methods, multivariate adaptive regression splines and graph machines), which are not yet used frequently to develop QSAR models for drug metabolism. Subsequently, rational recommendations for developing predictable and interpretable QSAR models are made. Finally, the recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction, including in vivo hepatic clearance, in vitro metabolic stability, inhibitors and substrates of cytochrome P450 families, are briefly summarized.  相似文献   

17.
The molecular alignments obtained from a previously reported pharmacophore model have been employed in a three-dimensional quantitative structure-activity relationship (3D QSAR) study, to obtain a more detailed insight into the structure-activity relationships for D(2) and D(4) receptor antagonists. The frequently applied CoMFA method and the related CoMSIA method were used. Statistically significant models have been derived with these two methods, based on a set of 32 structurally diverse D(2) and D(4) receptor antagonists. The CoMSIA and the CoMFA methods produced equally good models expressed in terms of q(2) values. The predictive power of the derived models were demonstrated to be high. Graphical interpretation of the results, provided by the CoMSIA method, brings to light important structural features of the compounds related to either low- or high-affinity D(2) or D(4) antagonism. The results of the 3D QSAR studies indicate that bulky N-substituents decrease D(2) binding, whereas D(4) binding is enhanced. Electrostatically favorable and unfavorable regions exclusive to D(2) receptor binding were identified. Likewise, certain hydrogen-bond acceptors can be used to lower D(2) affinity. These observations may be exploited for the design of novel dopamine D(4) selective antagonists.  相似文献   

18.
The reuptake blockade of biogenic amines by antidepressants is related not only to their therapeutics effects, but also to their side effects and potential drug-drug interactions. As an alternative to classical quantitative structure-activity relationships studies, in this work we propose different quantitative retention-activity relationships (QRAR) models that are able to describe the monoamine reuptake inhibition by antidepressants. The retention of compounds is measured using a biopartitioning micellar chromatography (BMC) system that can simulate the same hydrophobic, electronic and steric molecular interactions as those that condition drug activity. Since all the compounds considered in this work are structurally related because all of them share the same molecular features as the corresponding basic pharmacophore, the results obtained show that there is a retention range in which antidepressants present the highest monoamine reuptake inhibitor potency.  相似文献   

19.
构建人类腺苷受体A3亚型药效团模型和三维蛋白结构模型用于作用模式研究.以18个来源于文献具有腺苷受体A3亚型拮抗活性的化合物作为训练集,使用HypoGen方法构建药效团模型.通过同源模建和分子动力学模拟构建了人类腺苷受体A3亚型的三维蛋白模型,并利用PROCHECK方法评估该模型的合理性,对所得的结构使用分子对接程序进行作用模式分析,药效团模型和同源模建结果相互匹配较好.使用新药效团模型对MDL药物数据库(MDDR)中包含的约120000个化合物进行虚拟筛选,得到了8个候选化合物,用于进一步的生物学评价和活性测定.本工作对于人类腺苷受体A3亚型拮抗剂的设计和抗哮喘药物的研发具有一定的理论指导和应用价值.  相似文献   

20.
Blockade of human ether-à-go-go related gene (hERG) channel prolongs the duration of the cardiac action potential and is a common reason for drug failure in preclinical safety trials. Therefore, it is of great importance to develop robust in silico tools to predict potential hERG blockers in the early stages of drug discovery and development. Herein we described comprehensive approaches to assess the discrimination of hERG-active and -inactive compounds by combining quantitative structure-activity relationship (QSAR) modeling, pharmacophore analysis, and molecular docking. Our consensus models demonstrated high-predictive capacity and improved enrichment and could correctly classify 91.8% of 147 hERG blockers from 351 inactives. To further enhance our modeling effort, hERG homology models were constructed, and molecular docking studies were conducted, resulting in high correlations (R2 = 0.81) between predicted and experimental pIC??s. We expect our unique models can be applied to efficient screening for hERG blockades, and our extensive understanding of the hERG-inhibitor interactions will facilitate the rational design of drugs devoid of hERG channel activity and hence with reduced cardiac toxicities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号