首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circular dichroism is known to be the feature of a chiral agent which has inspired scientist to study the interesting phenomena of circularly polarized light (CPL) modulated molecular chirality. Although several organic molecules or assemblies have been found to be CPL‐responsive, the influence of CPL on the assembly of chiral coordination compounds remains unknown. Herein, a chiral coordination polymer, which is constructed from achiral agents, was used to study the CPL‐induced enantioselective synthesis. By irradiation with either left‐handed or right‐handed CPL during the reaction and crystallization, enantiomeric excesses of the crystalline product were obtained. Left‐handed CPL resulted in crystals with a left‐handed helical structure, and right‐handed CPL led to crystals with a right‐handed helical structure. It is exciting that the absolute asymmetric synthesis of a chiral coordination polymer could be enantioselective when using CPL, and provides a strategy for the control of the chirality of chiral coordination polymers.  相似文献   

2.
杨光  何晨露  邹纲 《高分子学报》2017,(11):1725-1738
手性是自然界中普遍存在的有趣现象之一,在生命体中手性大分子特有的不对称结构在维持生命过程、新陈代谢和进化等面均起着决定性作用.受此启发,合成具有新型结构的光学活性聚合物,研究其独特的物理化学性质和功能已成为当今高分子领域研究的热点.左旋和右旋的圆偏振光已被广泛应用于氨基酸衍生物的不对称光合成、光分解和去消旋化反应,以及诱导含有偶氮苯或三苯胺等特定功能基团的超分子组装体或无机纳米粒子形成稳定螺旋结构.本文详细地介绍了圆偏振光辐照在手性聚合物合成与螺旋结构调控中的应用,初步揭示了圆偏振光的作用机制以及优势,归纳总结了已取得的研究进展,并对圆偏振光在手性聚合物合成与结构调控中的应用及发展进行了简单的评述和展望.  相似文献   

3.
固态"绝对"不对称合成   总被引:4,自引:0,他引:4  
光学活性生物分子的形成是世界进化历史中一个重要过程。"绝对"不对称合成, 即在没有任何外界手性诱导试剂作用下或在圆偏振光影响下的封闭体系中的不对称合成, 为前生物时期天然手性的成因提供了解释。本文将综述通过非手性分子形成的手性晶体的固相反应进行的"绝对"不对称合成。  相似文献   

4.
Circularly polarized light (CPL) is known to be a true chiral entity capable of generating absolute molecular asymmetry. However, the degree of inducible optical activity depends on the λ of the incident CPL. Exposure of amorphous films of rac‐alanine to tunable CPL led to enantiomeric excesses (ee) which not only follow the helicity but also the energy of driving electromagnetic radiation. Postirradiation analyses using enantioselective multidimensional GC revealed energy‐controlled ee values of up to 4.2 %, which correlate with theoretical predictions based on newly recorded anisotropy spectra g(λ). The tunability of asymmetric photochemical induction implies that both magnitude and sign can be fully controlled by CPL. Such stereocontrol provides novel insights into the wavelength and polarization dependence of asymmetric photochemical reactions and are highly relevant for absolute asymmetric molecular synthesis and for understanding the origins of homochirality in living matter.  相似文献   

5.
The discovery and development of asymmetric autocatalysis, in which the structures of the chiral catalyst and the chiral product are the same, are described. Chiral 5-pyrimidyl, 3-quinolyl, and 5-carbamoyl-3-pyridyl alkanols act as highly enantioselective asymmetric autocatalysts in the enantioselective addition of diisopropylzinc to the corresponding aldehydes, such as pyrimidine-5-carbaldehyde. 2-Alkynyl-5-pyrimidyl alkanol with an enantiomeric excess (ee) of >99.5% automultiplies practically perfectly as an asymmetric autocatalyst in a yield of >99% and >99.5% ee. Asymmetric autocatalysis with an amplification of ee has thus been realized. Consecutive asymmetric autocatalysis starting with chiral 2-alkynylpyrimidyl alkanol of only 0.6% ee amplifies its ee significantly, and yields itself as the product with >99.5% ee. The reaction of pyrimidine-5-carbaldehyde and diisopropylzinc in the presence of chiral initiators with low ee's, such as secondary alcohol, amine, carboxylic acid, mono-substituted [2.2]paracyclophane, and chiral primary alcohols due to deuterium substitution, regulates the absolute configuration of the resulting pyrimidyl alkanols, and the ee of the resulting pyrimidyl alkanol is much higher than that of the chiral initiator. Leucine and [6]helicene with very low ee's, which are known to be induced by circularly polarized light (CPL), also serve as chiral initiators to produce pyrimidyl alkanol with higher ee's. Overall, the process represents the first correlation between the chirality of CPL and an organic compound with very high ee. Chiral inorganic crystals, such as quartz and sodium chlorate, act as chiral inducers in the asymmetric autocatalysis of pyrimidyl alkanol. The process correlates for the first time ever the chirality of inorganic crystals with an organic compound with very high ee.  相似文献   

6.
The synthesis of chiral C1‐symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10?3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL‐emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

7.
Biomolecular homochirality, the origin of which is still a puzzle, has challenged scientists to design chemical systems that provide chiral molecules through absolute asymmetric synthesis and to amplify a small stereochemical bias in such systems. The photoresolution of the enantiomers of helical-shaped, sterically overcrowded alkene 1 with circularly polarized light and the transduction of the stereochemical information by triggering the helical arrangement of a large collection of achiral molecules in a twisted nematic liquid crystalline phase (2) are examples of control and amplification of chirality.  相似文献   

8.
从不对称催化的角度总结了近年来碳硼成键反应的研究进展, 评述了这些反应各自的特点, 并对其未来研究进行了展望.  相似文献   

9.
The helical twisting tendency of liquid crystals (LCs) is generally governed by the inherent configuration of the chiral emitter. Here, we introduce the multistage inversion of supramolecular chirality as well as circularly polarized luminescence (CPL) by manipulating the ratio of single enantiomeric emitters (R-PCP) to LC monomers (5CB). Increasing the content of R-PCP from 1 wt % to 3 wt % inverted the helix of LCs from left-handed to right-handed, accompanying a CPL sign changed from positive to negative. The biaxiality of chiral emitters, as well as the steric effect of chiral-chiral and chiral-achiral interaction, were identified as the reasons for helical sense inversion. Due to the strong helical twisting power, 4 wt % R-PCP drove the photonic band gap (PBG) of chiral LCs to match up with their emission range, leading to an inversion of the CPL again with a high dissymmetry factor (≈1.2). Directly adjusting the PBG using chiral emitters is seldom achieved in cholesteric LCs. On this basis, an achiral sensitizer PtTPBP was assembled into the helical superstructure. The generation of triplet-triplet annihilation-induced upconverted CPL from R-PCP and the downshifting CPL from PtTPBP with opposite rotation was achieved in a single chiral LC system by tuning the position of the PBG.  相似文献   

10.
Right- and left-handed circularly polarized light (CPL) has been proposed as one of the origins of homochirality of biomolecules. However, the enantiomeric excess induced by CPL has been only very low (<2% ee). We found the unprecedented example of asymmetric autocatalysis triggered directly by a chiral physical factor, that is, right- and left-handed CPL, leading to a near enantiopure compound. Asymmetric photolysis of racemic pyrimidyl alkanol by r-CPL irradiation followed by asymmetric autocatalysis affords (R)-pyrimidyl alkanol with >99.5% ee. On the other hand, irradiation with l-CPL affords (S)-pyrimidyl alkanol with >99.5% ee. Thus, chiral physical power, such as CPL, in conjunction with asymmetric autocatalysis, provides a highly enantioenriched compound.  相似文献   

11.
Circularly polarized (CP) light, as a special form of polarized light, demonstrates potential application prospects in future displays and optoelectronic technologies. Circularly polarized luminescence (CPL) from chiral chromophores is an ideal method to directly generate CP light, but how to design efficient emitters is always a perplexing problem. Among various chiral materials, CPL materials with axial chirality can provide us with clear structural parameters and information to further explore the structure-activity relationship. Herein, we systematically summarize the development status of axially chiral compounds with CPL properties from two aspects of photoluminescence and electroluminescence, covering metal complexes, polymers, supramolecular assemblies, simple organic molecules, and liquid crystals systems. In addition, we initially explore the relationship between CPL performance and axially chiral configuration, and the current challenges and opportunities in this vibrant field are also discussed.  相似文献   

12.
The synthesis of chiral C1-symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10−3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL-emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

13.
Asymmetry through ion pairing: Upon addition of chloride and bromide ions, as chiral ammonium salts, to solutions of pyrrole-based π-conjugated linear oligomers, helical structures form with asymmetric induction, which is guided by the formation of diastereomeric ion pairs with chiral counter cations. These ions pairs exhibit circular dichroism (CD) and strong circularly polarized luminescence (CPL) with g(lum) values of greater than 0.1.  相似文献   

14.
The design and synthesis of achiral organic functional molecules which can assemble into a chiral with selective handedness in the absence of chiral substances is an important in understanding the role chirality plays within these systems. In this review, we described general approaches towards supramolecular chiral molecules the synthesis and self‐assembly of achiral molecule to active chiral molecules to investigate controlled supramolecular chiral nanostructures with their photoluminescent properties for rapid, sensitive and selective detection of analytes of choice. Various small molecules have been discussed for achiral to chiral along with induction of chirality and controlled chiral helical structures in detail. We discussed few examples where stimuli used to control the chirality such as temperature, pH etc. Finally, we will also explore on the photo responsive helicity properties of the aggregation induced emission active molecule such as tetraphenylethene conjugates.  相似文献   

15.
We discovered asymmetric autocatalysis in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde, where the product 5-pyrimidyl alkanol acts as a highly efficient asymmetric autocatalyst to afford more of itself (Soai reaction). Asymmetric autocatalysis proceeded quantitatively (>99% yield), affording itself as a near enantiomerically pure (>99.5% ee) product. An extremely low enantiomeric excess (ca. 0.00005% ee) can automultiply during three rounds of consecutive asymmetric autocatalysis to >99.5% ee by asymmetric amplification. Circularly polarized light, and inorganic and organic crystals, act as the origin of chirality to trigger asymmetric autocatalysis. Asymmetric autocatalysis has enormous power to recognize and amplify the chirality of hydrogen, carbon, oxygen, and nitrogen isotopomers. Moreover, absolute asymmetric synthesis, i.e., the formation of enantioenriched compounds without the intervention of any chiral factor, is realized by asymmetric autocatalysis. By using designed molecules based on 5-pyrimidyl alkanol, the intramolecular asymmetric control, self-replication, and improvement of chiral multifunctionalized large molecules has been developed by applying asymmetric autocatalysis.  相似文献   

16.
Absolute asymmetric photocyclization of isopropylbenzophenone derivatives was achieved by means of a cocrystal approach. Three chiral salt crystals formed by carboxylic acid derivatives with achiral amines could be prepared by spontaneous crystallization. In the M-crystal of 4-(2,5-diisopropylbenzoyl)benzoic acid with 2,4-dichlorobenzylamine, a twofold helical arrangement occurs in a counterclockwise direction to generate the crystal chirality. Conversely, the clockwise helix exists alone in the P-crystal. Irradiation of the M-crystal at >290 nm caused highly enantioselective Norrish type II cyclization to give the (R,R)-cyclopentenol, (R)-cyclobutenol, and (R)-hydrol in a 6:3:1 molar ratio, resulting in successful absolute asymmetric synthesis, while irradiation at around 350 nm afforded the (R,R)-cyclopentenol as the sole product. The reaction proceeded via single-crystal-to-single-crystal transformation, and therefore the reaction path producing the (R,R)-cyclopentenol could be traced by X-ray crystallographic analysis before and after irradiation.  相似文献   

17.
Chiral self‐assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self‐assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N‐(9‐fluorenylmethox‐ycarbonyl) (Fmoc)‐protected glutamic acid to self‐assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self‐assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality.  相似文献   

18.
The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold‐deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of 2H6‐ 1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to 2H6‐ 1 , the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1 . Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory.  相似文献   

19.
Determination of the absolute configuration (AC) of chiral molecules is a key issue in many fields related to chirality such as drug development, the asymmetric reaction screening, and the structure determination of natural compounds. Although various methods, such as X‐ray crystallography and NMR spectroscopy, are used to determine the AC, a simple and cheap alternative method is always anticipated. So far, electronic circular dichroism (ECD) spectroscopy has been widely used to ascertain the AC and enantiomeric excess (ee) values by applying appropriate organic probes. Here, circularly polarized luminescence (CPL) spectroscopy was applied to determine the AC and ee values of a series of amino acid and amino alcohol. The measurements were conducted by mixing the amino acids or amino alcohols with an achiral 1‐hydroxy‐2‐naphthaldehyde. Upon in situ formation of the Schiff base complexes, the system showed emission enhancement and CPL in the presence of Al3+, whose intensity and sign can be used to assign the chiral sense of the amino acids and amino alcohols. The authenticity of the method was further compared with the established CD spectroscopy, revealing that CPL spectra of formed Al3+ complex were effective to determine the AC of chiral species.  相似文献   

20.
Self‐assembling molecular systems often display amplified chirality compared to the monomeric state, which makes the molecular recognition more sensitive to chiral analytes. Herein, we report the almost absolute enantioselective recognition of a chiral perylenediimide (PDI) molecule by chiral supramolecular nanofibers of a bichromophoric naphthalenediimide (NDI) derivative. The chiral recognition was evaluated through the Förster resonance energy transfer (FRET) from the NDI‐based host nanofibers to the guest PDI molecules. The excitation energy was successfully transferred to the guest molecule through efficient energy migration along the host nanofiber, thus demonstrating the light‐harvesting capability of these hybrid systems. Furthermore, circularly polarized luminescence (CPL) was enantioselectively sensitized by the guest molecule as the wavelength band and sign of the CPL signal were switched in response to the chiral guest molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号