首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Treatment of dichloromethyl‐tris(trimethylsilyl)silane (Me3Si)3Si–CHCl2 ( 1 ), prepared by the reaction of tris(trimethylsilyl)silane with chloroform in presence of potassium tertbutoxide, with organolithium reagents (molar ratio 1 : 3) affords the bis(trimethylsilyl)methyl‐disilanes Me3SiSiR2–CH(SiMe3)2 ( 12 a–d ) ( a : R = Me, b : R = n‐Bu, c : R = Ph, d : R = Mes). The formation of 12 a–d is discussed as proceeding through an exceptional series of isomerization and addition reactions involving intermediate silyl substituted carbenoids and transient silenes. The carbenoid (Me3Si)2PhSi–C(SiMe3)LiCl ( 8 c ) is moderately stable at low temperature and was trapped with water to give (Me3Si)2PhSi–CH(SiMe3)Cl ( 9 c ) and with chlorotrimethylsilane affording (Me3Si)2PhSi–CCl(SiMe3)2 ( 7 c ). For 12 d an X‐ray crystal structure analysis was performed, which characterizes the compound as a highly congested silane with bond parameters significantly deviating from standard values.  相似文献   

2.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

3.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

4.
The Müller–Rochow direct process (DP) for the large-scale production of methylchlorosilanes MenSiCl4−n (n=1–3) generates a disilane residue (MenSi2Cl6−n, n=1–6, DPR) in thousands of tons annually. This report is on methylchlorodisilane cleavage reactions with use of phosphonium chlorides as the cleavage catalysts and reaction partners to preferably obtain bifunctional monosilanes MexSiHyClz (x=2, y=z=1; x,y=1, z=2; x=z=1, y=2). Product formation is controlled by the reaction temperature, the amount of phosphonium chloride employed, the choice of substituents at the phosphorus atom, and optionally by the presence of hydrogen chloride, dissolved in ethers, in the reaction mixture. Replacement of chloro by hydrido substituents at the disilane backbone strongly increases the overall efficiency of disilane cleavage, which allows nearly quantitative silane monomer formation under comparably moderate conditions. This efficient workup of the DPR thus not only increases the economic value of the DP, but also minimizes environmental pollution.  相似文献   

5.
The reactions of iodo(trimethyl)silane with N,N-dimethylformamide and N,N-dimethylacetamide Me2NCOR (R = H, Me) at a molar ratio of 1: 2 involved mainly cleavage of the N-C(=O) bond with formation of up to 80% of N,N-dimethyltrimethylsilylamine Me3SiNMe2 and the corresponding acyl iodide RCOI. In the reaction with N,N-dimethylformamide, formyl iodide HCOI was detected for the first time by gas chromatography-mass spectrometry. The contribution of Me-N bond cleavage, leading to N-methyl-N-trimethylsilyl derivative Me(Me3Si)NCOR and methyl iodide was considerably smaller. Another by-product was the corresponding N-methyl imide MeN(COR)2 formed by reaction of the initial amide with acyl iodide. The primary intermediate in the reaction of iodo(trimethyl)silane with DMF and DMA is quaternary ammonium salt [Me2(Me3Si)N+COR] I which decomposes via dissociation of the N-CO and N-Me bonds.  相似文献   

6.
The reactions of alkyn‐1‐yl(vinyl)silanes R2Si[C?C‐Si(H)Me2]CH?CH2 [R = Me (1a), Ph (1b)], Me2Si[C?C‐Si(Br)Me2]CH?CH2 (2a), and of alkyn‐1‐yl(allyl)silanes R2Si[C?C‐Si(H)Me2]CH2CH?CH2 (R = Me (3a), R = Ph (3b)] with 9‐borabicyclo[3.3.1]nonane in a 1:1 ratio afford in high yield the 1‐silacyclopent‐2‐ene derivatives 4a, b and 5a, and the 1‐silacyclohex‐2‐ene derivatives 6a, b, respectively, all of which bear a functionally substituted silyl group in 2‐position and the boryl group in 3‐position. This is the result of selective intermolecular 1,2‐hydroboration of the vinyl or allyl group, followed by intramolecular 1,1‐organoboration of the alkynyl group. In the cases of 4a, b, potential electron‐deficient Si? H? B bridges are absent or extremely weak, whereas in 6a,b the existence of Si? H? B bridges is evident from the NMR spectroscopic data (1H, 11B, 13C and 29Si NMR). The molecular structure of 4b was determined by X‐ray analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The main product of the photoinduced reaction of N-bromohexamethyldisilazane with trialkyl-(benzyloxy)derivatives of silicon and tin R3MO(CH2) n Ph (R = Me, Et; M = Si, Sn; n = 1) is N,N-dibenzylidene-C-phenylmethanediamine (hydrobenzamide). For M = Si, with increase of the length of the methylene chain between the oxygen atom and the phenyl group (n = 2, 3), the similar reaction affords the product of bromination of the benzylic carbon atom R3MO(CH2) n−1CHBrPh. For M = Sn, the reaction results in the formation of 2-phenyloxacycloalkanes PhCHO(CH2) n−1.  相似文献   

8.
Novel η1-vinyl complexes of the type Cp(CO)(L)FeC(OMe)C(R)R′ (R = R′ = H, Me; R = H, R′ = Me; L = Me3P, Ph3P) are obtainied via methylation of the acyl complexes Cp(CO)(L)FeC(O)R (R = Me, Et, i-Pr) with MeOSO2F and subsequent deprotonation of the resulting carbene complexes [Cp(CO)(L)FeC(OMe)R]SO3F with the phosphorus ylide Me3PCH2. The same procedure can be applied for the synthesis of the pentamethylcyclopentadienyl derivative C5Me5(CO)(Me3P)FeC(OMe)CH2, while treatment of the hydroxy or siloxy carbene complexes [Cp(CO)(L)FeC(OR)Me]X (R = H, Me3Si; X = SO3CF3) with Me3CH2 results in the transfer of the oxygen bound electrophile to the ylidic carbon. Some remarkable spectroscopic properties of the new complexes are reported.  相似文献   

9.
The method of synthesis of the hitherto unknown class of organosilicon compounds, phenyl(acyloxy)fluorosilanes C6H5Si(OCOR) n F3−n (n = 1, 2) and phenyl(acyloxy)fluorochlorosilanes C6H5Si(OCOR) FCl in up to 91% yield has been developed based on the reaction of phenyl(fluoro)chlorosilanes C6H5SiCl n F3−n (n = 1, 2) with trimethylsilyl esters of carboxylic acids Me3SiOC(O)R [R = H, CH3, CF3, CCl3, ClCH2, BrCH2, CH2=CHCH3, CH2=CHPh, CH(CH3)=CH2, Ph].  相似文献   

10.
Yttrocene‐carboxylate complex [Cp*2Y(OOCArMe)] (Cp*=C5Me5, ArMe=C6H2Me3‐2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare‐earth‐metal carboxylates. Equimolar reactions with bis‐neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium‐aluminum‐hydride complex [{Cp*2Y(μ‐H)AlMe2(μ‐H)AlMe2(μ‐CH3)}2] could be isolated, which features a 12‐membered‐ring structure. The adduct complexes [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] display identical 1J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar 89Y NMR shifts of δ=?88.1 ppm (R=CH2SiMe3) and δ=?86.3 ppm (R=Me) in the 89Y DEPT45 NMR experiments.  相似文献   

11.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

12.
Despite the eminent importance of metal alkylidene species for organic synthesis and industrial catalytic processes, molecular homoleptic metal methylene compounds [M(CH2)n] as the simplest representatives, have remained elusive. Reports on this topic date back to 1955 when polymeric [Li2(CH2)]n and [Mg(CH2)]n were accessed by pyrolysis of methyllithium and dimethylmagnesium, respectively. However, the insoluble salt‐like composition of these compounds has impeded their application as valuable reagents. We report that rare‐earth metallocene methyl complexes [(C5Me5)2Ln{(μ‐Me)2GaMe2}] (Ln=Lu, Y) trigger the formation of homoleptic gallium methylene [Ga8(μ‐CH2)12] from trimethylgallium [GaMe3] (Me=methyl) via a cascade C?H bond activation involving the dodecametallic clusters [(C5Me5)6Ln33‐CH2)6Ga9(μ‐CH2)9] as crucial intermediates. Such gallium methylene compounds feature a reversible [Ga8(μ‐CH2)12]/[Ga6(μ‐CH2)9] oligomer switch in donor solvents and act as Schrock‐type methylene‐transfer reagents.  相似文献   

13.
Photolytic vulcanization of siloxane rubber films in the presence of trimethylsiloxy-substituted di- and trisilanes, oligodimethylsilanosiloxanes (Me2SiO) m (SiMe2) n , Me(Me2SiO) m (SiMe2) n Me, oligodimethylsilanes Me(Me2Si) n Me, and volatile pyrolysis products of polydimethylsilane was studied.  相似文献   

14.
Reactions of SiCl4 with R2PO(OH) (R=Me, Cl) yield compounds with six-fold coordinated silicon atoms. Whereas R=Me afforded the hexacoordinated tetra-cationic silicon complex [Si(Me2PO(OH))6]4+ with chloride counter-ions, R=Cl caused release of HCl with formation of a cyclic dimeric silicon complex [Si(Cl2PO(OH))(Cl2PO2)3(μ-Cl2PO2)]2 with bridging bidentate dichlorophosphates.  相似文献   

15.
Synthesis and Structure of Pentaalkylchlorohexastibane Sb6R5Cl [R = (Me3Si)2CH] The reaction of RSbCl2 [R = (Me3Si)2CH] with Na‐K alloy in tetrahydrofuran gives besides the known rings SbnRn (n = 3, 4), (Me3Si)2CH2 and the pentaalkylchlorohexastibane Sb6R5Cl ( 1 ). 1 was characterized by spectroscopic methods (MS, 1H‐, 13C‐NMR, X‐ray diffraction). The structure of 1 consists of a folded four membered antimony ring in the all‐trans configuration with three alkyl groups and one Sb(R)—Sb(R)Cl fragment as substituents.  相似文献   

16.
Abstract

The reactions of either PhPCl2 or PCl3 with (Me3Si)2NLi followed by H2C[dbnd]CHMgBr were used to prepare the new P-vinyl substituted [bis(trimethylsilyl)amino]phosphines, (Me3Si)2NP(R)CH[dbnd]CH2 [1: R=Ph, 2: CH[dbnd]CH2, 3: R=Me, and 4: R=N(SiMe3)2]. Oxidative bromination of phosphines 3–1 afforded the P-bromo-P-vinyl-N-(trimethylsilyl)phosphoranimines, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)Br [5: R=Ph, 6: R=CH[dbnd]CH2, 7: R=Me], which, upon treatment with CF3CH2OH/Et3N, were subsequently converted to the P-trifluoroethoxy derivatives, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)OCH2CF3 [8: R=Ph, 9: R=CH[dbnd]CH2, 10: R=Me]. Compounds 1–10, which are of interest as potential precursors to P-vinyl substituted poly(phosphazenes), were fully characterized by elemental analyses (except for the thermally unstable P-Br derivatives 5–7) and NMR spectroscopy (1H, 13C, and 31P) including complete analysis of the vinylic proton splitting patterns via HOM2DJ experiments.  相似文献   

17.
Oxo(trisyl)borane (Me3Si)3C? B?O as an Intermediate The acyclic trisylboranes R? B(OSiMe3)? Cl ( 4 a ) and R? B(OH)? H ( 5 a ) and the cyclic boranes (? RB? O? CO? CO? O? ) ( 1 a ) and (? RB? O? RB? O? SO2? O? ) ( 6 a ) [R = (Me3Si)3C, “Trisyl”] are thermolyzed in the gasphase to give well-defined products. The tris(trisyl)boroxine (? RB? O? )3 ( 2 a ) is formed from 4 a and 5 a at 140 and 160°C, respectively, besides Me3SiCl and H2, respectively, whereas the six-membered ring [? BMe? CH(SiMe3)? SiMe2? O? SiMe2? CH2? ] ( 8 ) is the product from 1 a and 6 a at 600 and 700°C, respectively, besides CO/CO2 and SO3, respectively. The oxoborane R? B?O is presumably a common intermediate. It is stabilized at the lower temperature by cyclotrimerization to give 2 and at the higher temperature by a sequence of several intramolecular steps: a 1,3-silyl shift along the chain C? B? O, an exchange of Me and Me3SiO along the chain Si? C? B, and a C? H addition to the B?C double bond; the steps can be rationalized by analogous known reactions. The gas-phase thermolysis at 600°C of the dioxaboracyclohexenes (? BR? O? CR′ = CH? CRR′? O? ) ( 7 b? d ; R = Me, iPr, tBu; R′ = Me) yields the boroxines (RBO)3 and the enones Me? CO? CH?CHR? Me; the cyclohexene 7 e (R = Me; R′ = CF3) is not decomposed at 600°C.  相似文献   

18.
The current library of amidinate ligands has been extended by the synthesis of two novel dimethylamino-substituted alkynylamidinate anions of the composition [Me2N−CH2−C≡C−C(NR)2] (R = iPr, cyclohexyl (Cy)). The unsolvated lithium derivatives Li[Me2N−CH2−C≡C−C(NR)2] ( 1 : R = iPr, 2 : R = Cy) were obtained in good yields by treatment of in situ-prepared Me2N−CH2−C≡C−Li with the respective carbodiimides, R−N=C=N−R. Recrystallization of 1 and 2 from THF afforded the crystalline THF adducts Li[Me2N−CH2−C≡C−C(NR)2] ⋅ nTHF ( 1 a : R = iPr, n=1; 2 a : R = Cy, n=1.5). Precursor 2 was subsequently used to study initial complexation reactions with selected di- and trivalent transition metals. The dark red homoleptic vanadium(III) tris(alkynylamidinate) complex V[Me2N−CH2−C≡C−C(NCy)2]3 ( 3 ) was prepared by reaction of VCl3(THF)3 with 3 equiv. of 2 (75 % yield). A salt-metathesis reaction of 2 with anhydrous FeCl2 in a molar ratio of 2 : 1 afforded the dinuclear homoleptic iron(II) alkynylamidinate complex Fe2[Me2N−CH2−C≡C−C(NCy)2]4 ( 4 ) in 69 % isolated yield. Similarly, treatment of Mo2(OAc)4 with 3 or 4 equiv. of 2 provided the dinuclear, heteroleptic molybdenum(II) amidinate complex Mo2(OAc)[Me2N−CH2−C≡C−C(NCy)2]3 ( 5 ; yellow crystals, 50 % isolated yield). The cyclohexyl-substituted title compounds 2 a , 4 , and 5 were structurally characterized through single-crystal X-ray diffraction studies.  相似文献   

19.
The direction of reactions of acetyl iodide with aliphatic, aromatic, and heterocyclic thiols is determined by the thiol acidity and steric factors. Acetyl iodide reacted with aliphatic thiols, including trialkylsilylsubstituted derivatives R(CH2) n SH (R = Me, n = 3; R = Me3Si, n = 3; R = Et3Si, n = 2), to give the corresponding ethanethioates R(CH2) n SCOMe. Benzenethiol was oxidized with acetyl iodide to diphenyl disulfide. The reaction of acetyl iodide with 2-sulfanylethanol afforded 2-(2-iodoethyldisulfanyl)ethyl acetate as a result of three consecutive-parallel processes: acylation, iodination, and oxidation of the initial compound. 1,3-Benzothiazole-2-thiol reacted with acetyl iodide only at the nitrogen atom to give quaternary salt, whereas the SH group remained intact.  相似文献   

20.
Reactions of tBu(Me3Si)P? P(Li)? P(tBu)2 with CH3Cl and 1,2-Dibromoethane tBu(Me3Si)P? P(Li)? P(tBu)2 · 0.95 THF 1 with CH3Cl (?70°C) yields tBu(Me3Si)P? P = P(Me)(tBu)2 2 at ?70°C, with 1,2-Dibromoethane tBu(Me3Si)P? PBr? P(tBu)2 3 (main product) and tBu(Me3Si)P? P?P(Br)tBu2 4. 3 eliminates Me3SiBr yielding the cyclotetraphosphane {tBuP? P[P(tBu)2]}2 5 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号