首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

2.
A rapid, sensitive and reproducible LC–MS/MS method was developed and validated to determine iguratimod in human plasma. Sample preparation was achieved by protein precipitation with acetonitrile. Chromatographic separation was operated on an Ultimate® XB‐C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a flow rate of 0.400 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate and 0.1% formic acid as the mobile phase. The detection was performed on a Triple Quad™ 5500 mass spectrometer coupled with an electrospray ionization interface under positive‐ion multiple reaction monitoring mode with the transition ion pairs of m/z 375.2 → 347.1 for iguratimod and m/z 244.3 → 185.0 for agomelatine (the internal standard), respectively. The method was linear over the range of 5.00–1500 ng/mL with correlation coefficients ≥0.9978. The accuracy and precision of intra‐ and inter‐day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. As a result, the main pharmacokinetic parameters of iguratimod were as follows: Cmax, 1074 ± 373 ng/mL; AUC0–72, 13591 ± 4557 ng h/mL; AUC0–∞, 13,712 ± 4613 ng h/mL; Tmax, 3.29 ± 1.23 h; and t1/2, 8.89 ± 1.23 h.  相似文献   

3.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A simple and sensitive LC‐MS/MS method was developed and validated for the quantitation of pitolisant, an H3 receptor antagonist/inverse agonist. Acetonitrile protein precipitation technique was used to prepare rat blood and brain tissue homogenate samples by using aripiprazole as internal standard (IS). Chromatographic separation was performed by using Xbridge column (2.1 × 50 mm, 3.5 µm) with a gradient elution program. The mobile phase consists of ammonium formate (10 mm ) with 0.2% formic acid and acetonitrile. Multiple reaction monitoring mode was used in positive polarity with a transition of m/z 296.3 → 98.2 for the pitolisant and m/z 448.2 → 285.3 for the IS. The calibration curves were linear in the range of 0.1–100 ng/mL in both the blood and brain homogenate samples. This method was applied to quantify samples obtained from the pharmacokinetic and brain penetration studies in male wistar rats. Mean maximum concentration, area under the curve from zero to infinity and half‐life of the pitolisant were found to be 3.4 ± 1.7 ng/mL, 5 ± 4 ng h/mL and 1.9 ± 0.3 h, respectively, after a 3 mg/kg oral dose. The mean calculated concentrations in the brain were found to be 38, 60 and 52 ng/g at 0.5, 1 and 2 h, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
An improved, simple and highly sensitive LC‐MS/MS method has been developed and validated for quantification of febuxostat with 100 μL human plasma using febuxostat‐d7 as an internal standard (IS) according to regulatory guidelines. The analyte and IS were extracted from human plasma via liquid–liquid extraction using diethyl ether. The chromatographic separation was achieved on a Zorbax C18 column using a mixture of acetonitrile and 5 mm ammonium formate (60:40, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The total run time was 5.0 min and the elution of febuxostat and IS occurred at 1.0 and 1.5 min, respectively. A linear response function was established for the range of concentrations 1–6000 ng/mL (r > 0.99). The precursor to product ion transitions monitored for febuxostat and IS were m/z 317.1 → 261.1 and 324.2 → 262.1, respectively. The intra‐ and inter‐day precisions (%RSD) were within 1.29–9.19 and 2.85–7.69%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, a sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method for determination of hupehenine in rat plasma was developed and validated. After addition of imperialine as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 416.3 → 98.0 for hupehenine, and m/z 430.3 → 138.2 for IS. Calibration plots were linear throughout the range 2–2000 ng/mL for hupehenine in rat plasma. Mean recoveries of hupehenine in rat plasma ranged from 92.5 to 97.3%. Relative standard deviations of intra‐day and inter‐day precision were both <6%. The accuracy of the method was between 92.7 and 107.4%. The method was successfully applied to a pharmacokinetic study of hupehenine after either oral or intravenous administration. For the first time, the bioavailability of hupehenine was reported as 13.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In the present study, the development and validation of an LC‐MS/MS method for quantifying mefenamic acid in human plasma is described. The method involves liquid–liquid extraction using diclofenac as an internal standard (IS). Chromatographic separation was achieved on a Thermo Hypurity C18, 50 × 4.6 mm, 5 µm column with a mobile phase consisting of 2 m m ammonium acetate buffer and methanol (pH 4.5 adjusted with glacial acetic acid; 15:85, v/v) at a flow‐rate of 0.75 mL/min and the total run time was 1.75 min. Analyte was introduced to the LC‐MS/MS using an atmospheric pressure ionization source. Both the drug and IS were detected in negative‐ion mode using multiple reaction monitoring m/z 240.0 → 196.3 and m/z 294.0 → 250.2, respectively, with a dwell time of 200 ms for each of the transitions. The standard curve was linear from 20 to 6000 ng/mL. This assay allows quantification of mefenamic acid at a concentration as low as 20 ng/mL in human plasma. The observed mean recovery was 73% for the drug. The applicability of this method for pharmacokinetic studies has been established after successful application during a 12‐subject bioavailibity study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In this study, a simple and sensitive LC/MS/MS method was developed and validated for the determination of arctigenin in rat plasma. The MS detection was performed using multiple reaction monitoring at the transitions of m/z 373.2 → 137.3 for arctigenin and m/z 187.1 → 131.0 for psoralen (internal standard) with a Turbo IonSpray electrospray in positive mode. The calibration curves fitted a good linear relationship over the concentration range of 0.2–500 ng/mL. It was found that arctigenin is not stable enough at both room temperature and ?80 °C unless mixed with methanol before storage. The validated LC/MS/MS method was successfully applied for the pharmacokinetic study of arctigenin in rats. After intravenous injection of 0.3 mg/kg arctigenin injection to rats, the maximum concentration, half‐life and area under the concentration–time curve were 323 ± 65.2 ng/mL, 0.830 ± 0.166 and 81.0 ± 22.1 h ng/mL, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid–liquid extraction with tetra‐butyl methyl ether. Chromatographic separation was performed on Luna C18 column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280–300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A selective, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of tigecycline (TGC) in human plasma, using tigecycline‐d9 as an internal standard (IS). Analytical samples were prepared using a protein precipitation method coupled with a concentration process. The analyte and IS were separated on a reversed‐phase Waters Acquity UPLC® BEH‐C18 column (2.1 × 50 mm i.d., 1.7 μm) with a flow rate of 0.25 mL/min. The mobile phase consisted of water, containing 0.2% formic acid (v/v) with 10 mm ammonium formate (A) and acetonitrile (B). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 586.2 → 513.1 and m/z 595.1 → 514.0 for TGC and IS, respectively. The linearity of the method was in the range of 10–5000 ng/mL. Intra‐ and inter‐batch precision (CV) for TGC was <9.27%, and the accuracy ranged from 90.06 to 107.13%. This method was successfully applied to the analysis of samples from hospital‐acquired pneumonia patients treated with TGC, and a validated population pharmacokinetic model was established. This developed method could be useful to predict pharmacokinetics parameters and valuable for further pharmacokinetics/pharmacodynamics studies.  相似文献   

14.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, a fast UHPLC‐MS/MS method was developed and validated for the determination of a novel potent carvone Schiff base of isoniazid (CSB‐INH) in rat plasma using carbamazepine as an internal standard (IS). After a single‐step protein precipitation by acetonitrile, CSB‐INH and IS were separated on an Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) under an isocratic mobile phase, consisting of acetonitrile: 10 mM ammonium acetate (95:5, v/v), at a flow rate of 0.3 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring mode by using positive electrospray ionization source. The precursor to product ion transitions were set at m/z 270.08 → 79.93 for CSB‐INH and m/z 237.00 → 178.97 for IS. The proposed method was validated in compliance with US Food and Drug Administration and European Medicines Agency guidelines for bioanalytical method validation. The method was found to be linear in the range of 0.35–2500 ng/mL (r2 ≥ 0.997) with a lower limit of quantification of 0.35 ng/mL. The intra‐ and inter‐day precision values were ≤12.0% whereas accuracy values ranged from 92.3 to 108.7%. In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of CSB‐INH in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

17.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

18.
A simple, selective and rapid HPLC‐MS/MS method was developed and validated for the determination of caderofloxacin in human plasma. Sparfloxacin was used as the internal standard (IS). After precipitation with methanol and dilution with the mobile phase, the samples were injected into the HPLC‐MS/MS system. The chromatographic separation was performed on a Zorbax XDB Eclipse C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of ammonium acetate buffer (20 mm, pH 3.0)–methanol, 45:55 (v/v). The MS/MS analysis was done in positive mode. The multiple reaction monitoring transitions monitored were m/z 412.3 → 297.1 for caderofloxacin and m/z 393.2 → 292.2 for the IS. The calibration curve was linear over the range of 50.0–8000 ng/mL with an aliquot of 100 μL plasma. The precision of the assay was 2.0–9.4 and 6.6–11.5% for the intra‐ and inter‐run variability, respectively. The intra‐ and inter‐run accuracy (relative error) was 4.4–10.0 and ?1.2–4.0%. The total run time was 3.5 min. The assay was fully validated in accordance with the US Food and Drug Administration guidance. It was successfully applied to a pharmacokinetic study of caderofloxacin in healthy Chinese volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this study was to establish and validate a rapid, selective and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for simultaneous quantitations of morin and morusin, and to investigate their pharmacokinetics difference between normal and diabetic rats after oral administration. Plasma samples were pretreated via protein precipitation with acetonitrile. Genkwanin was used as internal standard (IS). Analytes and IS were separated on a Thermo Hypersil Gold C18 column (50 × 4.6 mm, 3 μm) using gradient elution. The mobile phase consisted of acetonitrile and 0.1% formic acid in water at a flow rate of 0.5 mL/min. Mass spectrometry detection was carried out by means of negative electrospray ionization source and multipe‐reaction monitoring mode. The transitions of m/z 300.9 → 151.2 for morin, m/z 419.2 → 297.1 for morusin and m/z 283.1 → 268.2 for IS were chosen for quantification. Calibration curves were linear in the range of 1.01–504.2 ng/mL (r2 ≥ 0.99) for morin and 1.02–522.3 ng/mL (r2 ≥ 0.99) for morusin. The lower limit of quantification was 1.02 ng/mL for morin and 1.05 ng/mL for morusin. The extraction recovery was >85.1% for each analyte. No obvious matrix effect was observed under the present UPLC–MS/MS conditions during all of the bioanalysis. The stability study demonstrated that morin and morusin remained stable during the whole analytical procedure. The method was successfully applied to support the pharmacokinetic comparisons of morin and morusin between normal and diabetic rats.  相似文献   

20.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号