首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendrobine, considered as the major active alkaloid compound, has been used for the quality control and discrimination of Dendrobium which is documented in the Chinese Pharmacopoeia. In this work, a sensitive and simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method for determination of dendrobine in rat plasma is developed. After addition of caulophyline as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 (2.1 ×100 mm, 1.7 µm) column with acetonitrile and 0.1% formic acid as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 264.2 → 70.0 for dendrobine and m/z 205.1 → 58.0 for IS. Calibration plots were linear throughout the range 2–1000 ng/mL for dendrobine in rat plasma. The RSDs of intra‐day and inter‐day precision were both <13%. The accuracy of the method was between 95.4 and 103.9%. The method was successfully applied to pharmacokinetic study of dendrobine after intravenous administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, a sensitive and selective UPLC‐MS/MS method for determination of ardisiacrispin A in rat plasma was developed. Cyasterone used as an internal standard (IS) and protein precipitation by acetonitrile–methanol (9:1, v /v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m /z 1083.5 → 407.1 for ardisiacrispin A and m /z 521.3 → 485.2 for IS. Calibration plots were linear throughout the range 5–2000 ng/mL for ardisiacrispin A in rat plasma. Mean recoveries of ardisiacrispin A in rat plasma ranged from 80.4 to 92.6%. The values of RSD of intra‐ and inter‐day precision were both <11%. The accuracy of the method was between 97.3 and 105.6%. The method was successfully applied to pharmacokinetic study of ardisiacrispin A after intravenous administration in rats.  相似文献   

5.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The aim of this study was to develop an analytical method to determine mequitazine in rat plasma and urine. Mequitazine was separated by UPLC–MS/MS equipped with a Kinetex core–shell C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% (v/v) aqueous formic acid and acetonitrile containing 0.1% (v/v) formic acid as a mobile phase by gradient elution at a flow rate of 0.3 mL/min. Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique operating in multiple reaction monitoring positive ion mode. Mass transitions were m/z 323.3 → 83.1 for mequitazine and 281.3 → 86.3 for imipramine as internal standard. Liquid–liquid extraction with ethyl acetate and protein precipitation with methanol were used for sample extraction. Chromatograms showed that the method had high resolution, sensitivity and selectivity without interference from plasma constituents. Calibration curves for mequitazine in rat plasma and urine were 0.02–200 ng/mL, showing excellent linearity with correlation coefficients (r2) >0.99. Both intra‐ and inter‐day precisions (CV%) were within 4.08% for rat plasma and urine. The accuracies were 99.58–102.03%. The developed analytical method satisfied the criteria of international guidance. It could be successfully applied to pharmacokinetic studies of mequitazine after oral and intravenous administration to rats.  相似文献   

8.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive LC–MS/MS method for the determination of bruceine D in rat plasma was developed. The analyte and IS were separated on a Luna C18 column (2.1 × 50 mm, 1.7 μm) using a mobile phase of acetonitrile and 0.1% formic acid in water (40:60, v/v) at a flow rate of 0.25 mL/min. The selected reaction monitoring mode was chosen to monitor the precursor‐to‐product ion transitions of m/z 409.2 → 373.2 for bruceine D and m/z 469.2 → 229.3 for IS using a negative ESI mode. The method was validated over a concentration range of 0.5–2000 ng/mL for bruceine D. Total chromatography time for each run was 3.5 min. The method was successfully applied to a pharmacokinetic study of bruceine D in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A selective, sensitive and rapid ultra‐performance liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of etonogestrel (ENG) and ethinyl estradiol (EE) in human plasma. The analytes and their deuterated internal standards, ENG‐d7 and EE‐d4, were extracted from plasma samples by solid‐phase extraction on HyperSep™ Retain PEP cartridges. The chromatographic analysis was performed on an Acquity UPLC HSS Cyano column, 100 Å (50 × 2.1 mm, 1.8 μm), column using gradient mobile phase, acetonitrile and 2.0 mm ammonium trifluoroacetate at 0–1.7 min (65:35, v/v) and 1.8–2.7 min (95:5, v/v) with 0.250 mL/min flow rate. Analytes and IS protonated precursor → product ion transitions (ENG, m/z 325.2 → 257.2; EE, m/z 530.2 → 171.2; ENG‐d7, m/z 332.2 → 263.2; EE‐d4, m/z 534.2 → 171.2) were monitored on a Triple Quadrupole Mass spectrometer (TQMS), operating in multiple reaction monitoring and positive ionization mode. The calibration curves were established at 10.00–2500 pg/mL for ENG and 1.500–150.0 pg/mL for EE with a correlation coefficient (r2) ≥0.9996 for both. The validated method was successfully applied to support a bioequivalence study of 0.15 mg ENG and EE 0.03 mg tablet formulation, administered in 24 healthy Indian females. Method reliability was assessed by reanalysis of 94 incurred study samples.  相似文献   

11.
An improved, precise and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the quantification of trimetazidine, using trimetazidine‐d8 as the internal standard (IS). Interference owing to plasma phospholipids during sample preparation was overcome using a hybrid solid‐phase extraction–phospholipid ultra cartridge. The mean extraction recovery of trimetazidine (98.66%) and trimetazidine‐d8 (97.63%) from spiked plasma was consistent and reproducible. Chromatographic analysis was performed on a UPLC Ethylene Bridged Hybrid (BEH) C18 (50 × 2.1 mm, 1.7 μm) column with isocratic elution using acetonitrile–5 mm ammonium formate, pH 3.5 (40:60, v/v) as the mobile phase. The parent → product ion transitions for trimetazidine (m/z 267.1 → 181.1) and trimetazidine‐d8 (m/z 275.2 → 181.1) were monitored on a triple quadrupole mass spectrometer with electrospray ionization functioning in the positive multiple reaction monitoring mode. The linearity of the method was established in the concentration range of 0.05–100 ng/mL for trimetazidine. The intra‐batch and inter‐batch accuracy and precision (CV) were 97.3–103.1 and 1.7–5.3%, respectively. Qualitative and quantitative assessment of matrix effect showed no interference of endogenous/exogenous components. The developed method was used to measure plasma trimetazidine concentration for a bioequivalence study with 12 healthy subjects.  相似文献   

12.
GL‐V9, a derivative of wogonin, shows much more potent anticancer properties than wogonin. In this study, a selective, sensitive and rapid ultra‐high‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the determination of GL‐V9 in rat plasma. Plasma samples were processed using methanol to precipitate protein. Chromatographic separation of analytes was achieved on a C18 column using gradient elution within 4.5 min. The mobile phase consisted of acetonitrile and water including 0.1% (v/v) formic acid and 5 mm ammonium acetate. GL‐V9 and caffeine (internal standard) were monitored by positive electrospray triple quadrupole mass spectrometer and quantified using multiple reaction monitoring (MRM) mode with the transitions of m/z 410.20 → 126.10 (GL‐V9) and 195.10 → 138.00 (IS: caffeine), respectively. Good linearity was obtained over the range of 2–1000 ng/mL (R2 > 0.99) and the extraction recovery was 101.91 ± 11.34%. The intra‐ and inter‐day precision variations were small (RSD 1.35–6.96%) and the relative error (RE) of accuracy was ?7.35–6.27%. The established and validated UPLC–MS/MS method was successfully applied to study the pharmacokinetic behavior of GL‐V9 after administration through different delivery routes. The results demonstrated that pulmonary delivery exhibited a greater advantage in terms of improving bioavailability compared with oral administration.  相似文献   

13.
Tedizolid (TDZ) is a novel oxazolidinone class antibiotic, indicated for the treatment of acute bacterial skin and skin structure infections in adults. In this study a highly sensitive UPLC‐MS/MS assay was developed and validated for the determination of TDZ in rat plasma using rivaroxaban as an internal standard (IS). Both TDZ and IS were separated on an Acquity UPLC BEH? C18 column using an isocratic mobile phase comprising of acetonitrile–20 mm ammonium acetate (85:15, v/v), eluted at 0.3 mL/min flow rate. The plasma sample was processed by liquid liquid extraction technique using ethyl acetate as an extracting agent. The analyte and IS were detected in positive mode using electrospray ionization source. The precursor to product ion transitions at m/z 371.09 > 343.10 for TDZ and m/z 435.97 > 144.94 for IS were used for the quantification in multiple reaction monitoring mode. The calibration curve was linear in the concentration range of 0.74–1500 ng/mL and the lower limit of quantification was 0.74 ng/mL only. The developed assay was validated following standard guidelines for bioanalytical method validation (US Food and Drug Administration) and all the validation results were within the acceptable limits. The developed assay was successfully applied into a pharmacokinetic study in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Macitentan is an endothelin receptor antagonist commonly used in the treatment of pulmonary arterial hypertension (PAH). A novel, rapid, simple and sensitive UPLC–MS/MS method was developed and validated for pharmacokinetic study and the determination of macitentan in PAH patients. Macitentan and bosentan, which are used as internal standards, were detected using atmospheric pressure chemical ionization in positive ion and multiple reaction monitoring mode by monitoring the mass transitions m/z 589.1 → 203.3 and 552.6 → 311.5, respectively. Chromatographic separation was performed on a reverse‐phase C18 column (5 μm, 4.6 × 150 mm) with an isocratic mobile phase, which consisted of water containing 0.2% acetic acid–acetonitrile (90:10, v/v) at a flow rate of 1 mL/min. Retention times were 1.97 and 1.72 min for macitentan and IS, respectively. The calibration curve with high correlation coefficient (0.9996) was linear in the range 1–500 ng/mL. The lower limit of quantitation and average recovery values were determined as 1 ng/mL and 89.8%, respectively. This method is the first UPLC–MS/MS method developed and validated for the determination of macitentan from human plasma. The developed analytical method was fully validated for linearity, selectivity, specificity, accuracy, precision, sensitivity, stability, matrix effect and recovery according to US Food and Drug Administration guidelines. The developed method was applied successfully for pharmacokinetic study and the determination of macitentan in PAH patients.  相似文献   

15.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

16.
A simple, sensitive and specific method using ultraperformance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) was developed to determine sunitinib and N‐desethyl sunitinib in mouse plasma and tissues. The analytes were separated by an isocratic mobile phase consisting of acetonitrile and buffer solution (water with 0.1% formic acid and 5 m m ammonium acetate; 40: 60, v/v) running at a flow rate of 0.35 mL/min for 2 min. Quantification was performed using a mass spectrometer by multiple reaction monitoring in positive electrospray ionization mode. The transition was monitored at m/z 399 → 283, m/z 371 → 283 and m/z 327 → 270 for sunitinib, N‐desethyl sunitinib and internal standard, respectively. Calibration curves were linear over concentration ranges of 2–500, 0.5–50 and 1–250 ng/mL for plasma, heart and other biosamples. The method was successfully applied to animal experiments. The pharmacokinetic study indicated that sunitinib was eliminated quickly in mice with a half‐life of 1.2 h; tissue distribution data showed more sunitinib and its metabolite in liver, spleen and lung, which provided reference for further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive, selective and high‐throughput UPLC‐MS/MS method was developed and validated for the determination of a novel c‐Met tyrosine kinase inhibitor, QBH‐196, in rat plasma. QBH‐196 and its analog BH357 (IS) were extracted from rat plasma using a mixture of dichloromethane and N‐hexane (2:3, v/v). The chromatographic separation was carried out on Phenomenex C18 column (50 × 2.1 mm, 2.6 µm particle size) with a gradient mobile phase of methanol (A) and water containing 0.05% formic acid (B) at a flow rate of 0.2 mL/min. The assay was performed by positive electrospray ionization in multiple reaction monitoring mode using transitions of m/z 622.68 → 140.41 for QBH‐196 and m/z 591.19 →126.21 for the IS, respectively. Good linearity was obtained over the concentration range of 8.0–4000 ng/mL (r2 > 0.99) for QBH‐196 and the lower limit of quantification was 8.0 ng/mL in rat plasma. Validations of the method, including its sensitivity, extraction recovery, matrix effect, intra‐ and inter‐day precision, accuracy and stability, were all within acceptable limits. The established method was successfully applied to determine absolute oral bioavailability of QBH‐196 in rats for the first time. The mean oral absolute bioavailability of QBH‐196 was found to be about 40.8% and the elimination half‐life was 40.0 ± 13.1 h. This result suggested that QBH‐196 exhibits good oral absorption in vivo, which is very important for the further development of QBH‐196 as a new oral anticancer drug. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Filgotinib is a selective JAK1 (Janus kinase) inhibitor, filed in Japan for the treatment of rheumatoid arthritis. In this paper, we report a validated liquid chromatography coupled with tandem mass spectrometry for the quantification of filgotinib in rat plasma using tofacitinib as an internal standard (IS) as per the Food and Drug Administration regulatory guidelines. Filgotinib and the IS were extracted from rat plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid:acetonitrile; 20:80, v/v) at a flow rate of 0.9 mL/min on a Gemini C18 column. Filgotinib and the IS were eluted at ~1.31 and 0.89 min, respectively. The MS/MS ion transitions monitored were m/z 426.3 → 291.3 and m/z 313.2 → 149.2 for filgotinib and the IS, respectively. The calibration range was 0.78–1924 ng/mL. No matrix effect and carryover were observed. Intra- and inter-day accuracies and precisions were within the acceptance range. Filgotinib was stable for three freeze–thaw cycles: on bench-top up to 6 h, in an autosampler up to 21 h, and at −80 ° C for 1 month. This novel method has been applied to a pharmacokinetic study in rats.  相似文献   

20.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号