首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Structural information of gas phase complexes of poly(ethylene glycol) (PEG) cationized by one or two different alkali metal ions is inferred from MS and MS/MS experiments performed with an electrospray quadrupole ion trap mass spectrometer. The rationale for selecting PEG was that its sites for cation binding are non-selective with respect to the repeating monomeric unit of the polymer, but there is selectivity with respect to the formation of an inner coordination sphere specific to each metal ion. The dissociation of [M1+ M2+ (EO23)], where EO23 = linear polymer of ethylene oxide, 23 units in length, resulted in loss of one of the alkali metal ions, with preference for loss of the larger cation, with no fragmentation of the PEG backbone for Na, K, Rb, and Cs. Li was not examined in this portion of the study. The selectivity for loss of the larger alkali metal ion was [Na+ K+ (EO23)] to [Na+ (EO23)] + K+ at 100%; [K+ Rb+ (EO23)] to [K+ (EO23)] + Rb+ at 93%; and [Rb+ Cs+ (EO23)] to [Rb+ (Eo23)] + Cs+ at 99%. The resolution of [M+ (EOx)] for x = 20-30 was dependent on the alkali metal ion, with the highest resolution observed for Cs+ and the lowest for Na+. These results are discussed with respect to the packing of the oxygen atoms on PEG (M.W.(avg) = 1000) around an alkali metal ion of different radius, and how this packing leads to an ensemble of unique structures, and therefore mobilities for [M+ (EOx)].  相似文献   

2.
The coordination reaction of Na+, K+, Rb+ and Cs+ with benzo- 15-crown-5, 18-crown-6 and the newly synthesized cyclic polyethers 2, 3-benzo-8, 15-dimethyl-18-crown-6, 2, 3-benzo-8, 11, 15-trimethyl-18-crown-6 in methanol at 25`C has been studied by conductometric titration. The stability constants for the 1:1 coordination compounds were calculated. The marked selectivity of 18-crown-6 toward alkali metal ions was not found in its methyl derivatives. The induction effect of the benzene ring and methyl group on polyether ring reduced the stability of the coordination compounds. In methanol, the stability sequence of te compounds of alkali metal ions with 18-crown-6 was K+>Rb+>Cs+>Na+, that of its dimethyl derivative was K+>Rb+>Na+>Cs+ and that of its trimethyl derivative was K+>Na+>Rb+>Cs+, that is, the methyl substituent had a weaker influence on the stability of Na+ compound than on that of Rb+ or Cs+ compound. In the range of concentration studied, decrease in equivalent conductance is in agreement with the prediction on the basis of the structure of the complexes. The above results may give a clue for modifying the structure of a crown ether for specified selectivity.  相似文献   

3.
A systematic study of cation-pi interactions between alkali metal ions and the cyclopentadienyl ring of ferrocene is presented. The alkali metal (Li+, Na+, K+, Rb+, Cs+) salts of the ditopic mono(pyrazol-1-yl)borate ligand [1,1'-fc(BMe2pz)2]2- crystallize from dimethoxyethane as multiple-decker sandwich complexes with the M+ ions bound to the pi faces of the ferrocene cyclopentadienyl rings in an eta5 manner (fc = (C5H4)2Fe; pz = pyrazolyl). X-ray crystallography of the lithium complex reveals discrete trimetallic entities with each lithium ion being coordinated by only one cyclopentadienyl ring. The sodium salt forms polyanionic zigzag chains where each Na+ ion bridges the cyclopentadienyl rings of two ferrocene moieties. Linear columns [-CpR-Fe-CpR-M+-CpR-Fe-CpR-M+-](infinity) (R = [-BMe2pz]-) are established by the K+, Rb+, and Cs+ derivatives in the solid state. According to DFT calculations, the binding enthalpies of M+-eta5(ferrocene) model complexes are about 20% higher as compared to the corresponding M+-eta6(benzene) aggregates when M+ = Li+ or Na+. For K+ and Rb+, the degree of cation-pi interaction with both aromatics is about the same. The binding sequence along the M+-eta5(ferrocene) series follows a classical electrostatic trend with the smaller ions being more tightly bound.  相似文献   

4.
Thermodynamic standard Gibbs energies of transfer of alkali metal cations related to Cs+ cation [DeltatG degrees*,(Cs+)-[DeltatG degrees*,(M+)] between several mutually saturated solvents of the type water-solvent were calculated from determined extraction exchange constants Kexch degrees,*(Cs+/M+). The used liquid-liquid extraction method with radioactive tracing by 137Cs permits attaining higher precision of the values as compared to the methods used up to now. The data for o-nitrophenyloctyl ether, 1,2-dichloroethane, and 1-octanol were compared with literature sources and recommended absolute values of DeltatG degrees,*M+) are reported. For dissociating solvents, the dependences of [DeltatG degrees,*(Cs+) - [DeltatG degrees,*(M+)] on Gibbs energy of hydration of an ion, DeltaGhydr degrees are straight lines either for four cations Cs+, Rb+, K+, and Na+ (nitrosolvents) or for three cations Cs+, Rb+, and K+ (1,2-dichloroethane and 1-octanol). The hydration of Na+ and still more of Li+ in the water-saturated organic phase is apparent from the results. This manifests for high-water-content equilibrium 1-octanol even in a reversal of the values [i.e., DeltatG degrees*,(Li+) being more negative than DeltatG degrees,*(Na+)], although for Cs+, Rb+, and K+, the general trend is conserved. Water-saturated 1-octanol is thus slightly less basic than water, but the overall selectivity is very low. For one studied nondissociating solvent, dioctyl sebacate, the trend of the dependences of log Kexch degrees,*(CsB/M+) on DeltaGhydr degrees is similar to that of Kexch degrees,*(Cs+/M+) for polar solvents, but different for different anions B, thus reflecting ion association in the organic phase.  相似文献   

5.
偏钛酸型锂离子交换剂表面性质与选择吸附性研究   总被引:11,自引:0,他引:11  
本文采用Li渗入于TiO2经高温热力学重结晶制备偏钛酸型锂离子交换剂,其对碱金属、碱土金属溶液中的Li+ 具有特殊选择吸附性,其次序为Li+>Mg2+>Ca2+>Na+,K+。对交换剂表面性质以及Li+ 在固-液界面的选择吸附特性进行了研究。通过对某气田卤水提锂实验表明:该交换剂对低Li+ 含量卤水中Li+ 的选择性吸附效果显著,对Mg2+、Ca2+、Na+、K+ 的分离效果好,Li+ 的富集倍数达9倍,并具有较好的循环稳定性。  相似文献   

6.
The crystallization kinetics of the γ-irradiated and the unirradiated glass Ag7I4VO4 was studied dynamically by means of DTA, and isothermally via electrical conductivity measurements. The influence of doping with alkali metal ions (Li+, Na+, K+, Rb+ or Cs+) on the crystallization process in the glass was also investigated. The results showed that the rate of crystallization depends on the nature of the added metal ion and on the crystallization growth mechanism. The latter is a two-dimensional process for both the pure and the alkali metal-doped glasses. The effects of irradiation and additive ions on the crystallization process are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Nickel hexacyanoferrates containing alkali metal cations as counter ions were used to prepare ion-selective electrodes for potentiometric sensing of intercalated species in the coated wire electrode (CWE) configuration. All the electrodes developed display a quasi-Nernstian response towards potassium ion, whereas the highest sensitivity is generally achieved when Cs+ is the counter cation in the sensing material. The selectivity constants of the electrodes were calculated by the matched potential method considering K+ as the primary ion. The selectivity order is Cs+ > K+ > Na+ > Li+ and reflects the effective dimension of the hydrated cations.  相似文献   

8.
Formation constants (ML) of 1 : 1 19-crown-6 (19C6) complexes with mono- (M+) and bivalent metal ions (M2+) were determined in water at 25 °C by conductometry. The KML value of 19C6 for M+ and M2+ decreases in the order Rb+ K+ > Tl+ > Na+ = Ag+ > Li+ Cs+ and Pb2+ > Ba2+ > Sr2+ > Cd2+ > Ca2+, respectively. The selectivity for the neighboring alkali metal ions in the periodic table is lower for 19C6 than for 18-crown-6 (18C6) except for the case of Rb+ and Cs+. The same is true for the alkaline earth metal ions. Generally, the KML values of 19C6 with M2+ are greater than those with M+. For Na+ and the ions which are smaller in size than Na+ (Li+, Ca2+, Cd2+), the KML value is larger for 19C6 than for 18C6, but the contrary holds for all the other ions of larger sizes than Na+. The limiting ionic molar conductivity (°) of the 19C6–K+ complex in water at 25 °C was determined to be 43. Although 19C6 is larger than 18C6, the 19C6–K+ complex is much more mobile in water than the 18C6–K+ complex.  相似文献   

9.
Structures of LiSCN, NaSCN, KSCN, RbSCN, and CsSCN complexes with 3',5'-difluoro-4'-hydroxybenzyl-armed monoaza-15-crown-5 ether (5) were investigated. The Li+ and Na+ complexes are (1:1)n polymer-like complexes bridged by hydrogen bonding. On the other hand, the K+, Rb+, and Cs+ complexes are polymer-like complexes bridged by the fluorine atoms of the side arms. The titration calorimetry and 19F NMR titration experiments suggest that one or both fluorine atoms along with the oxygen atom of the phenolic OH group coordinate to the alkali metal ions incorporated in the crown part of a second armed ligand to give polymer-like complexes in solution. The FAB-MS data indicated that larger alkali metal ions form more stable polymer-like complexes.  相似文献   

10.
The distribution and dynamics of alkali cations inside Na-AOT reverse micelles have been investigated using Monte Carlo and molecular dynamics simulations. Water is modeled using the extended simple point charge (SPC/E) model. Simulations were carried out for alkali salts of Li+, Na+, K+, and Cs+ placed into the aqueous core of the reverse micelle, for situations corresponding to one and three molecules of added salt. In all cases, we observe that the larger K+ and Cs+ ions exchange with the Na+ counterion; however, the smaller Li+ ion prefers to remains solvated within the core of the reverse micelle. Our study reveals that the oil-water interface of the Na-AOT reverse micelle has the greatest selectivity toward Cs+ followed by K+ and Li+. A model based on enthalpic contributions illustrates that the solvation energies of the different cations in water control the ion-exchange process. The hydration number of the first water shell for Li+ situated in the aqueous core of the reverse micelle with radius R = 14.1 A was similar to that observed at infinite dilution in bulk water.  相似文献   

11.
Single, double and triple charging of poly(propylene glycol) (PPG) (Mn = 1900 g/mol) in the presence of binary mixtures of cations (Li+, Na+, K+, Cs+, and NH4+) under electrospray ionization (ESI) conditions were investigated. For these studies, sodium ion was selected as the reference cation, and the resulting ion-intensities were evaluated as a function of the [Na+]/[C+] ratio (where C+ is the other cation, i.e., Li+, K+, Cs+ and NH4+). A linear relationship was found between INa+/IC+)and [Na+]/[C+] (INa+ and IC+ stand for the intensity of the singly charged PPG molecules cationized with Na+ and C+ ions, respectively). The slope of the INa+/IC+--[Na+]/[C+] plot (alpha) indicates the binding selectivity of Na+ ions to PPG chains with respect to cation C+. In the case of the doubly charged PPG chains, the INaNa2+/INaC2+ and INaC2+/ICC2+ versus [Na+]/[C+] ratio also yield straight lines with slopes of approximately alpha/2 and 2alpha, respectively (INaNa2+, INaC2+ and ICC2+ are the intensity of the doubly charged PPG chains cationized with two Na+ ions, Na+ and C+ ions, and two C+ ions, respectively). Similarly, linear dependences with the [Na+]/[C+] ratio for the corresponding intensity ratios of the triply charged PPG were found. Based on the value of alpha, the selectivity of the cations was found to increase in the order of Li+ < Cs+ approximately Na+ < K+ approximately NH4+. The observed relative ion intensities are interpreted on the basis of the solution state equilibrium between PPG and the cations. In addition, the investigations showed that the abundances of the doubly and triply charged PPG-containing mixed cations can be optimized in a simple way using the value of alpha.  相似文献   

12.
为了探索金属离子对含有不同侧链的多肽气相解离的影响,采用质谱法研究了碱金属离子Li+,Na+,K+,Rb+和Cs+分别与丝氨酸、亮氨酸和赖氨酸五肽(分别简写为S5,L5和K5)形成的复合物的裂解反应. 质谱定性结果表明,5种碱金属离子均可以在气相中与丝氨酸、亮氨酸和赖氨酸五肽形成配合比为1:1 和2:1的非共价复合物;竞争反应结果表明,随着碱金属离子半径的增加,它们与3种五肽的结合能力逐渐减弱. 质谱定量结果表明,K+与丝氨酸、亮氨酸和赖氨酸五肽复合物的结合常数分别为8.94×104,2.83×104和2.50×103 L/mol,表明K+与五肽复合物的结合强度按照丝氨酸、亮氨酸和赖氨酸的顺序依次减小. 含不同侧链碱金属离子-五肽复合物的碰撞诱导解离结果表明,复合物的碎裂主要发生在骨架上,丝氨酸五肽复合物最易碎裂,亮氨酸五肽复合物其次,赖氨酸五肽复合物则较难碎裂,且3种复合物的侧链断裂情况也呈现明显差异. 此外,研究了Na+与亮氨酸五肽复合物所产生的碎片离子,分析了不同离子之间的来源关系,并以Dunbar的复合物理论模型为依据,推测在碎裂过程中,碱金属离子可能向五肽的碳端或氮端偏移. 质谱碎片分析结果表明,在2:1的非共价复合物中,第一个碱金属离子与五肽上4个酰胺键的羰基结合,第二个碱金属离子与五肽的羧基氧原子结合.  相似文献   

13.
Extraction of alkali metal picrates with N,N'-dibenzyl-18-crown-6 was carried out, with dichloromethane as water-immiscible solvent, as a function [ligand]/[metal cation]. The extractability of metal picrates (Li(+), Na(+), K(+), Rb(+), Cs(+)) was evaluated as a function of [L]/[M(+)]. The extractability of complex cation-picrate ion pairs decreases in this sequence: Li(+)>Rb(+)>Cs(+)>K(+)>Na(+). The overall extraction equilibrium constants (K(ex)) for complexes of N,N'-dibenzyl-18-crown-6 with alkali metal picrates between dichloromethane and water have been determined at 25 degrees C. The values of the extraction constants (logK(ex)) were determined to be 10.05, 6.83, 7.12, 7.83, 6.73 for Li(+), Na(+), K(+), Rb(+) and Cs(+) compounds, respectively. DB186 shows almost 2-fold extractability against Li(+) compared to the other metal picrates, whereas it shows no obvious extractability difference amongst the other metal cations when [L]/[M(+)] is 0.2-1. However, an increasing extractability is observed for Cs(+) when [L]/[M(+)] [1].  相似文献   

14.
The kinetics of the alkaline hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) have been studied in aqueous DMSO, dioxane, and MeCN. In all solvent mixtures the reaction rate steadily decreases to half of its value in pure water in the range of 0-70 vol % of organic cosolvent and sharply increases in mixtures with lower water content. Correlations based on different scales of solvent empirical parameters failed to describe the solvent effect in this system, but it can be satisfactorily treated in terms of a simplified stepwise solvent-exchange model. Alkali metal ions catalyze the BNPP hydrolysis but do not affect the rate of hydrolysis of neutral phosphotriester p-nitrophenyl diphenyl phosphate in DMSO-rich mixtures. The catalytic activity decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. For all cations except Na+, the reaction rate is first-order in metal ion. With Na+, both first- and second-order kinetics in metal ions are observed. Binding constants of cations to the dianionic transition state of BNPP alkaline hydrolysis are of the same order of magnitude and show a similar trend as their binding constants to p-nitrophenyl phosphate dianion employed as a transition-state model. The appearance of alkali metal ion catalysis in a medium, which solvates metal ions stronger than water, is attributed to the increased affinity of cations to dianions, which undergo a strong destabilization in the presence of an aprotic dipolar cosolvent.  相似文献   

15.
Nakamura H  Takagi M  Ueno K 《Talanta》1979,26(10):921-927
An extraction study of alkali metal cations has been made with crown-ether reagents, 4'-picrylaminobenzo-15-crown-5 derivatives (HL). On dissociation in alkaline medium, the orange HL gives the blood-red anion L(-) and extracts alkali metal ions into chloroform as coloured complexes of composition ML.HL or ML. The ease of extraction decreases in the order, K(+) > Rb(+) > Cs(+) > Na(+) > Li(+). The extracted complexes are ML.HL for K(+) and Rb(+), and both ML.HL and ML for Na(+). The Li(+) complex is not extracted. The photometric determination of 10-800 ppm of K(+) is possible in the presence of other alkali and alkaline earth metal ions.  相似文献   

16.
Determinations of the crystal structures of complexes of the alkali metal ions with, in the case of Li, the dianion and, in the cases Na-Cs, the monoanion of p-tert-butyltetrathiacalix[4]arene have shown that both the sulfur atoms which form part of the macrocyclic ring, as well as the pendent phenolic/phenoxide oxygen donor atoms, are involved in coordination to these metals. Although the Li and Na complex structures are similar to those of the corresponding complexes of p-tert-butylcalix[4]arene, there is no similarity in the structures of the Cs complexes, with the present structure showing no evidence of polyhapto Cs(+)-pi interactions. Instead, the complex crystallizes as a ligand-bridged (S-, O-donor) aggregate of three Cs ions, solvent molecules, and four calixarenes, somewhat like the Rb complex, though here four Rb ions are present, and higher in aggregation than the K+ complex, where two K+ ions are sandwiched between two calixarene moieties. The triethylammonium complex of the thiacalixarene monoanion, though formally analogous in that it involves a monocation, has a simpler structure than any of the alkali metal derivatives, based formally on proton coordination (H-bonding). However, interestingly, it can be isolated in both solvated (dmf, dmso) and unsolvated forms, as indeed can the "free", p-tert-butyltetrathiacalix[4]arene ligand itself.  相似文献   

17.
A post-source decay matrix-assisted laser desorption/ionization mass spectrometric (PSD-MALDI-MS) study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, is reported. The fragmentations of rutin were performed by selecting the [R + Cat]+ peaks for PSD, where R represents a rutin molecule and Cat an alkali metal ion (Li+, Na+, K+). The PSD-MALDI mass spectra showed, depending on Cat, different fragmentation patterns with respect to both the quality and quantity of the fragment ions formed. The intensity of fragmentation decreased in the order Li+ > Na+ > K+. The fragmentation mechanism and an explanation for the observed differences are suggested.  相似文献   

18.
Bis(calix[4]diquinones) 1 and 2 and double calix[4]diquinone 3 have been synthesized from their corresponding double calix[4]arenes 4, 5, and 6, respectively. Compounds 4-6 have been prepared from one-pot and stepwise syntheses under high pressure. Complexation studies of ligands 1-3 with alkali metal ions such as Li+, Na+, K+, and Cs+ were carried out by 1H NMR titrations. Receptors 1 can selectively form 1:1 complexes with Na+. Ligand 2 prefers to form 1:1 complexes with K+ and Cs+. Receptor 3 retained the cone conformation of the calix[4]arene unit upon binding K+ but changed the conformation when complexing Li+ and Na+. Electrochemical studies using cyclic voltammetry and square wave voltammetry showed significant changing of voltammograms of 2 and 3 in the presence of alkali metal ions. Receptor 3 showed the electrochemically switched binding property toward Na+ and K+.  相似文献   

19.
Tunell I  Lim C 《Inorganic chemistry》2006,45(12):4811-4819
Many of the group IA and IIA metal ions, such as Na+, K+, Mg2+, and Ca2+, play crucial roles in biological functions. Previous theoretical studies generally focus on the number of water molecules bound to a particular (as opposed to all) alkali or alkaline earth cations and could not establish a single preferred CN for the heavier alkali and alkaline earth ion-water complexes. Crystal structures of hydrated Na+, K+, and Rb+ also cannot establish the preferred number of inner-shell water molecules bound to these cations. Consequently, it is unclear if the gas-phase CNs of group IA metal hydrates increase with increasing ion size, as observed for the group IIA series from the Cambridge Structural Database, and if the same factors govern the gas-phase CNs of both group IA and IIA ion-water complexes. Thus, in this work, we determine the number of water molecules directly bound to the series of alkali (Li+, Na+, K+, and Rb+) and alkaline earth (Be2+, Mg2+, Ca2+, Sr2+, and Ba2+) metal ions in the gas phase by computing the free energy for forming an isolated metal-aqua complex as a function of the number of water molecules at 298 K. The preferred gas-phase CNs of group IA hydrates appear insensitive to the ion size; they are all 4, except for Rb+, where a CN of 6 seems as likely. In contrast, the preferred gas-phase CNs of the group IIA dications increase with increasing ion size; they are 4 for Be2+, 6 for Mg2+ and Ca2+, and 7 for Sr2+ and Ba2+. An entropic penalty disfavors a gas-phase CN greater than 4 for group IA hydrates, but it does not dictate the gas-phase CNs of group IIA hydrates. Instead, interactions between the metal ion and first-shell water molecules and between first-shell and second-shell water molecules govern the preferred gas-phase CNs of the group IIA metal hydrates.  相似文献   

20.
为了获得更多的多肽结构信息,采用结构简单的甘氨酸五肽(简写为GGGGG或G5)作为模型,研究了碱金属离子(Li+、Na+、K+、Rb+)对甘氨酸五肽GGGGG气相解离过程的影响.将一定化学计量比的甘氨酸五肽分别和四种碱金属盐溶液混合后,静置10h,使反应达到平衡.电喷雾质谱结果表明,四种碱金属离子均可以在溶液中与甘氨酸五肽形成非共价复合物,其中主要组分为碱金属离子与G5配合比为1:1和2:1的非共价复合物.质谱碰撞诱导解离(CID)时的碰撞能量为25eV.气相碰撞诱导解离实验结果表明,在配合比为1:1的复合物中,其碎片化程度按照Li+、Na+、K+、Rb+的次序依次减小,Rb+的复合物碎裂过程中生成了不常见的c、z离子;在配合比为2:1的复合物中,其碎片化程度按照Li+、Na+、K+、Rb+的次序依次增大.与1:1的非共价复合物相比,Na+、K+、Rb+的2:1复合物的气相解离显得更加容易.除Li+外,两个碱金属离子对G5的活化能力明显较单个碱金属离子强,它们可以诱导多肽在更多位点断裂,生成更多类型的碎片离子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号