首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An artificial cell membrane that is composed of bilayer lipid membranes (BLMs) with transmembrane proteins incorporated within them represents a well‐defined system for the analysis of membrane proteins, especially ion channel proteins that are major targets for drug design. Because the BLM system has a high compatibility with recently developed cell‐free expression systems, it has attracted attention as a next‐generation drug screening system. However, three issues associated with BLM systems, i. e., their instability, the need for non‐volatile organic solvents and a low efficiency of ion channel incorporation, have limited their use as a drug screening platform. In this personal account, we discuss our recent approaches to address these issues based on microfabrication. We also discuss the potential for using the BLM system combined with cell‐free expression systems as a drug screening system for future personalized medicine.  相似文献   

2.
Impact of novel screening technologies on ion channel drug discovery   总被引:1,自引:0,他引:1  
Ion channels are a large superfamily of membrane proteins that pass ions across membranes. They are critical to diverse physiological functions in both excitable and nonexcitable cells and underlie many diseases. As a result, they are an important target class which is proven to be highly "druggable". However, for high throughput screening (HTS), ion channels are historically difficult as a target class due to their unique molecular properties and the limitations of assay technologies that are HTS-amendable. In this article, we describe the background of ion channels and current status and challenges for ion channel drug discovery, followed by an overview of both conventional and newly emerged ion channel screening technologies. The critical impact of such new technologies on current and future ion channel drug discovery is also discussed.  相似文献   

3.
Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications. We investigated gels for in situ encapsulation of multiple BLMs formed across apertures in a hydrophobic ethylene tetrafluoroethylene (ETFE) support. The encapsulation gels consisted of networks of poly(ethylene glycol)‐dimethacrylate or poly(ethylene glycol)‐diacrylate polymerized using either a chemical initiator or a photoinitiator. The hydrogels were studied with regards to volumetric stability, porosity, and water permeability. All hydrogels had pore sizes around 7 nm with volumetric changes >2% upon crosslinking. Photoinitiated hydrogels had a lower hydraulic water permeability compared to chemically initiated hydrogels; however, for all hydrogels the permeability was several‐fold higher than the water permeability of conventional reverse osmosis (RO) membranes. Lifetimes of freestanding BLM arrays in gel precursor solutions were short compared to arrays formed in buffer. However, polymerizing (crosslinking) the gel stabilized the membranes and resulted in BLM arrays that remained intact for days. This is a substantial improvement over lifetimes for freestanding BLM arrays. Optical images of the membranes and single channel activity of incorporated gramicidin ion channels showed that the lipid membranes retained their integrity and functionality after encapsulation with hydrogel. Our results show that hydrogel encapsulation is a potential means to provide stability for biomimetic devices based on functional proteins reconstituted in biomimetic membrane arrays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Langmuir-Blodgett monolayer and planar bilayer lipid membrane (BLM) experiments are used to study the relative significance of dipolar potential and packing/fluidity in the control of the permeability of phospholipid/steroid BLMs to potassium ion. Practical chemical construction of BLMs designed to achieve particular dipolar potential and packing/fluidity characteristics are described. The ability to modify selectively the salient physical properties of BLMs allows optimization of the ion permeability and receptor activity of the membrane. The use of BLMs to quantify drug response and receptor activity is illustrated by examples involving valinomycin, phloretin, concanavalin A and auxin receptor.  相似文献   

5.
The stabilization of suspended planar lipid membranes, or black lipid membranes (BLMs), through polymerization of mono- and bis-functionalized dienoyl lipids was investigated. Electrical properties, including capacitance, conductance, and dielectric breakdown voltage, were determined for BLMs composed of mono-DenPC, bis-DenPC, mono-SorbPC, and bis-SorbPC both prior to and following photopolymerization, with diphytanoyl phosphocholine (DPhPC) serving as a control. Poly(lipid) BLMs exhibited significantly longer lifetimes and increased the stability of air-water transfers. BLM stability followed the order bis-DenPC > mono-DenPC ≈ mono-SorbPC > bis-SorbPC. The conductance of bis-SorbPC BLMs was significantly higher than that of the other lipids, which is attributed to a high density of hydrophilic pores, resulting in relatively unstable membranes. The use of poly(lipid) BLMs as matrices for supporting the activity of an ion channel protein (IC) was explored using α-hemolysin (α-HL), a model IC. Characteristic i-V plots of α-HL were maintained following photopolymerization of bis-DenPC, mono-DenPC, and mono-SorbPC, demonstrating the utility of these materials for preparing more durable BLMs for single-channel recordings of reconstituted ICs.  相似文献   

6.
7.
The single-molecule selectivity and specificity of the binding process together with the expected intrinsic gain factor obtained when utilizing flow through a channel have attracted the attention of analytical chemists for two decades. Sensitive and selective ion channel biosensors for high-throughput screening are having an increasing impact on modern medical care, drug screening, environmental monitoring, food safety, and biowarefare control. Even virus antigens can be detected by ion channel biosensors. The study of ion channels and other transmembrane proteins is expected to lead to the development of new medications and therapies for a wide range of illnesses. From the first attempts to use membrane proteins as the receptive part of a sensor, ion channels have been engineered as chemical sensors. Several other types of peptidic or nonpeptidic channels have been investigated. Various gating mechanisms have been implemented in their pores. Three technical problems had to be solved to achieve practical biosensors based on ion channels: the fabrication of stable lipid bilayer membranes, the incorporation of a receptor into such a structure, and the marriage of the modified membrane to a transducer. The current status of these three areas of research, together with typical applications of ion-channel biosensors, are discussed in this review.  相似文献   

8.
Methods of in-vitro artificial formation of bilayer lipid membranes (BLM) and their analytical applications are reviewed, on the basis of 122 literature references. Different techniques for preparation of free-suspended planar BLMs, and gel-, filter-, and solid-supported systems are presented. The analytical applications developed are based on direct interaction of analytes with chemically unmodified BLMs, and with systems modified by use of redox mediators, ionophores, ion-channel forming species, enzymes, antibodies, or DNA.  相似文献   

9.
Electrical properties such as membrane potential (Em) of planar bilayer lipid membranes (BLMs) are readily measured. Planar BLMs have been extensively used as models of biomembranes. In this paper we report BLMs formed in the solutions containing chiral complexes: d-K[Co(EDTA)], l-K[Co(EDTA)]; d-[Co(C2O4)(en)2]I, and l-[Co(C2O4)(en)2]I, whose Em values display great differences, implying strong chiral selectivity. The permeability ratios of different chiral complexes calculated from Em are the same as those obtained from human erythrocyte experiments. These results showed that chiral selectivity of cell uptake was mainly caused by the chirality of the membrane phospholipid itself. As a rapid and sensitive analytic tool, the BLM may be used to study permeating pathways and drug–membrane interactions. With further research, the BLM system may be developed into a useful method for drug screening.  相似文献   

10.
We report the fabrication of a microfluidic apparatus and the realization of a sensors based on PEDOT : PSS, a biocompatible semiconductor polymer used in substitution of standard electrodes for electrophysiological studies and for detection of nanopores in membrane. This gives the possibility to study the mechanisms of ions balance and molecular transport though cell membranes. In particular the apparatus is based on two chambers connected through an aperture in a PTFE sheet where lipid bilayer are formed using Montal‐Mueller method, and the pore‐forming proteins activity is detected by polymeric electrodes. This methodology could be applied to examine different membrane proteins for the purpose of biosensing, drug screening and nanopore technologies.  相似文献   

11.
自组装ITO/双层磷脂膜的制备及其光电行为研究   总被引:3,自引:0,他引:3  
在ITO(Indium-tin-oxide)导电玻璃电极上制备上自组装双层磷脂膜和经C60修饰的双层磷脂膜,研究了这种自组装双层磷脂膜的光电行为,考察了偏压、溶液中的给体和受体的浓度对自组装膜光电流强度的影响,讨论了C60分子对光电子跨膜传递过程的促进作用。  相似文献   

12.
The lipid bilayer postulated as the basic structural matrix of biological membranes is widely accepted. At present, the planar bilayer lipid membrane (BLM) together with spherical lipid bilayers (liposomes), upon suitable modification, serves as a most appropriate model for biological membranes. In recent years, advances in microelectronics and interest in ultrathin organic films, including BLMs and Langmuir-Blodgett (L-B) films, have resulted in a unique fusion of ideas toward the development of biosensors and transducers. Furthermore, recent trends in interdisciplinary studies in chemistry, electronics, and biology have led to a new field of research: biomolecular electronics. This exciting new field of scientific-technological endeavor is part of a more general approach toward the development of a new, post-semiconductor electronic technology, namely, molecular electronics with a long-term goal of molecular computers.

Recently, it has been demonstrated that BLMs, after suitable modification, can function as electrodes and exhibit nonlinear electronic properties. These and other experimental findings relevant to sensor development and to “biomolecular electronic devices” (BED) will be described in more details in the present review article. Also the potential use of the BLM system together with its modifications in the development of a new class of organic diodes, switches, biosensors, electrochemical photocells, and biofuel cells will be discussed. Additionally, this paper reports also a novel technique for obtaining BLMs (or lipid bilayers) on solid supports. The presence of solid support on one side of the BLM greatly enhances its mechanical stability, while retaining the dynamic properties of the lipid bilayer. Advantages of the new techniques for self-assembling amphiphilic molecules on rigid substrates are discussed in terms of their possible uses. It is evident that the new BLM system (s-BLMs) is potentially useful for technological applications in the area of biosensors and enzyme electrodes as well as molecular electronics.  相似文献   


13.
14.
龚静鸣  林祥钦 《中国化学》2003,21(7):756-760
A synthetic cationic surfactant, 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-l,3-dioxane bromide (DTDB), was used to construct a supported bilayer lipid membrane (s-BLM) coatedon an underlying glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), small-angle X-ray diffraction (SAXD) and cyclic voltammetry were used to characterize the s-BLM. Both EIS and SAXD data indicated that the synthetic lipid exists as a well-oriented bilayer in the membrane.The voltammetric study showed that the lipid membrane can open ion channels in the presence of ClO4^- stimulant with Ru(bpy)3^2 as marker ions and give distinct channel currents.The channels can be dosed and open up again many times by removing or introducing ClO4^- anions.  相似文献   

15.
Despite the rapid and enormous progress in biotechnologies, the biochemical analysis of membrane proteins is still a difficult task. The presence of the large hydrophobic region buried in the lipid bilayer membrane (transmembrane domain) makes it difficult to analyze membrane proteins in standard assays developed for water-soluble proteins. To handle membrane proteins, the lipid bilayer membrane may be used as a platform to sustain their functionalities. Relatively slow progress in developing micro total analysis systems (μTAS) for membrane protein analysis directly reflects the difficulty of handling lipid membranes, which is a common problem in bulk measurement technologies. Nonetheless, researchers are continuing to develop efficient and sensitive analytical microsystems for the study of membrane proteins. Here, we review the latest developments, which enable detection of events caused by membrane proteins, such as ion channel current, membrane transport, and receptor/ligand interaction, by utilizing microfabricated structures. High-throughput and highly sensitive detection systems for membrane proteins are now becoming a realistic goal. Although most of these systems are still in the early stages of development, we believe this field will become one of the most important applications of μTAS for pharmaceutical and clinical screenings as well as for basic biochemical research.  相似文献   

16.
The transport of ions and glucose across bilayer lipid membranes (BLM) facilitated by amphotericin B (AmB) is studied by use of planar BLMs and liposomal membranes. The transport characteristics change with time in the presence of cholesterol, while it is independent of time in the absence of cholesterol. The carrier‐type transport is observed immediately after the addition of AmB. In the presence of cholesterol, AmB forms a 1 : 1 complex with cholesterol and the channel is formed by aggregation of AmB‐cholesterol complexes. It is concluded that the number of the channels increases with time and that the carrier‐type transport decreases instead.  相似文献   

17.
通过一个两步程序在膜片电极尖端形成自组装双层脂膜:(1)膜片电极尖端沾取成膜液;(2)将吸附成膜液的尖端浸入电解液中,排除尖端多余的成膜液,通过电学方法监测双层脂膜的形成。将短杆菌肽通道蛋白分散在成膜液和电解质溶液中,在制备膜片电极支撑双层脂膜过程中,短杆菌肽重组到双层脂膜中形成离子通道,对通道的一般特性进行了研究,并观察到通道开放和关闭的现象。  相似文献   

18.
The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90-95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6'-hydroxy-ZBM, BLM Z, and 6'-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6'-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6'-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug.  相似文献   

19.
The expression mechanism of permselectivity through a gramicidin A (gA) channel between two aqueous phases (W1 and W2) was investigated. When the concentration of CsCl or CsBr in W1 was equivalent to that in W2, the single‐channel current was proportional to the absolute value of the applied membrane potential. Although the single‐channel current linearly increased with increasing electrolyte concentration in W1 and W2 until about 0.1 M (mol dm?3), it began to level off around 0.1 M, indicating that ion permeation across the channel pore is the rate‐determining step and that the saturation of the transporting ion within the channel pore provokes the leveling off. In the case of asymmetric composition of the electrolyte in W1 and W2, the monovalent cation and the counter anion were transported in the opposite direction through the gA channel pore or the bilayer lipid membrane around the gA channel. Finally, the experimental data was fitted using the Goldman‐Hodgkin‐Katz equation based on the relationship between the membrane potential and the single‐channel current to define the ratio of the diffusion coefficients of Cs+, Cl?, and Br? as 5.7 : 1.0 : 0.26.  相似文献   

20.
《Electroanalysis》2003,15(20):1616-1624
This work uses lipid film based biosensors with incorporated calix[4]resorcinarene receptor (lipophilic macrocyclic host molecule) for the rapid electrochemical detection of adrenaline. Freely‐suspended and metal supported BLMs (composed of egg phosphatidylcholine (PC) and 35% (w/w) dipalmitoyl phosphatidic acid) modified with the resorcin[4]arene receptor were used as one shot sensors to rapidly detect this catecholamine. The interactions of this compound with freely‐suspended BLMs were found to be electrochemically transduced in the form of a transient current signal with duration of seconds, which reproducibly appeared about 14 s after exposure of the membranes to adrenaline. The response time for these BLMs without incorporated receptor for adrenaline was about 1.5 min. The magnitude of the transient current signal was related to the concentration of adrenaline in bulk solution in the micromolar range. Differential scanning calorimetric (DSC) experiments were performed to explore the mechanism of interactions of BLMs with incorporated receptor with adrenaline. The interactions of adrenaline with surface‐stabilized bilayer lipid membranes (sBLMs) with incorporated receptor produced electrochemical ion current increases, which reproducibly appeared within a few seconds after exposure of the membranes to the stimulant. The use of the receptor in sBLMs increased the sensitivity of the method 6‐fold. The current signal increases were related to the concentration of adrenaline in bulk solution in the micromolar range. Stabilized lipid membranes formed by polymerization on glass fiber microfilters were used as practical chemical biosensors for the rapid detection of adrenaline. The interactions of polymerized lipid films with adrenaline were also found to provide transient current signals similar to those of freely‐suspended BLMs. The magnitude of the transient current signal was also related to the concentration of the stimulating agent in bulk solution in the micromolar range and these stabilized lipid films can be used again after storage in air. No interferences from ascorbic acid were noticed because of the negatively charged lipids in membranes. The effect of other compounds such as proteins and other compounds closely related to adrenaline was also investigated. Results of recovery experiments using human urine have shown recoveries ranged between 94 to 105%, which shows no interferences from matrix effects due to the presence of urine constituents. The present sensor based on stabilized lipid films can be used for the rapid repetitive detection of this pharmaceutical substance and keep prospects for the selective determination of catecholamines in biofluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号