首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
阳离子聚合物基因转染载体的研究进展   总被引:2,自引:0,他引:2  
安全有效的基因载体是实现基因治疗的必要条件,由于阳离子聚合物易于合成和改性,无免疫原性,可以方便地与DNA形成紧密的超分子复合物,保护DNA免受核酸酶的降解,并促进其进入细胞,从而成为非病毒基因载体中的一个重要类型;但阳离子聚合物基因载体,对细胞具有电荷相关的毒性,转染效率低于病毒载体,这成为限制其进入临床使用的瓶颈.本文从提高阳离子聚合物作为基因载体时的转染效率及降低其毒性方面综述了阳离子聚合物基因载体的研究进展,归纳了改善阳离子聚合物基因载体转染特性的八种方法,预测了阳离子聚合物基因载体的发展前景.  相似文献   

2.
为得到低毒、高效的聚阳离子基因载体,以甲基丙烯酸氨乙酯(AMA)和甲基丙烯酸N,N-二乙基氨乙基酯(DEAEMA)为单体,以2-溴代异丁酸乙酯(EBIB)为引发剂,通过原子转移自由基聚合(ATRP)制备了两种聚(甲基丙烯酸氨乙酯-co-甲基丙烯酸N,N-二乙基氨乙基酯)阳离子无规共聚物(P(AMA-co-DEAEMA),简称P).琼脂糖凝胶电泳实验结果表明聚合物P作为阳离子载体可以有效地络合DNA,通过粒径仪测定的复合物粒子的尺寸在400 ~ 600 nm之间.扫描电镜观察的P/DNA复合物形貌是分散均匀的球形颗粒.以25kDa PEI为阳性参照,利用MTT比色法考察了聚合物P对HEK293T细胞的毒性.结果表明,聚合物P的细胞毒性低于25 kDa PEI的细胞毒性.以25 kDa PEI和裸质粒DNA作为参照,我们进一步考察了聚合物P与DNA形成的复合物在HEK293T细胞中的转染效率.结果表明P/DNA复合物在HEK293T细胞中的转染效率远远高于裸质粒DNA的转染效率,并且接近于25 kDa PEI/DNA复合物的转染效率.  相似文献   

3.
交联型聚乙烯亚胺智能基因载体的制备及PEG化影响   总被引:3,自引:0,他引:3  
使用胱胺双丙烯酰胺(CBA)对低分子量聚乙烯亚胺(PEI)进行交联反应制备智能降解型聚阳离子基因载体.通过与聚乙二醇(PEG)反应得到不同程度PEG化的聚阳离子载体.利用核磁、黏度测试、粒度仪、zeta电位仪和凝胶电泳对聚阳离子载体及其与DNA的复合物进行了表征.研究表明随着PEG含量的增加,聚阳离子载体/DNA复合物颗粒粒径变小、表面正电荷降低,PEG具有明显的屏蔽作用,但过多的PEG也使载体与DNA复合能力下降.通过MTT细胞毒性测试和荧光素酶质粒转染实验得出,含二硫键的交联型阳离子聚合物在测试范围内显示了非常低的细胞毒性,最佳转染效率是PEI25k的4倍,PEG化后其细胞毒性得到进一步改善,转染效率却明显降低.  相似文献   

4.
高永光  贾静娴  王丽红  张红霞  陈伟 《化学通报》2021,84(8):829-834,819
设计合成了三种罗丹明B修饰的树形高分子核酸递送载体GR-1、GR-2和GR-3,并通过核磁共振氢谱分析了树形分子表面联接的罗丹明B的数目。琼脂糖凝胶电泳实验表明,树形分子表面的罗丹明B数目越少,对RNA的浓缩效果越好。在三种核酸递送材料中,GR-3对Antagomir-138-5p的递送效率最高,基因沉默效率70% 左右,高于商业化的转染试剂Lipofectamine 2000。  相似文献   

5.
将RGD短肽接枝到聚谷氨酸(PGA)上,制备了一种靶向性的基因载体遮蔽材料PGA-RGD.通过凝胶电泳实验及体外转染实验证明得出RGD的引入增加了载体材料与细胞表面受体的特异性作用,在载体表面正电荷得到遮蔽的同时,转染效率还得到了一定程度的增加.同时,对转染了48h的三元复合物进行MTT细胞毒性测试表明,PGA遮蔽的基因载体体系(PGA/PEI/DNA)和PGA-RGD遮蔽的基因载体体系(PGA-RGD/PEI/DNA)的细胞毒性均低于PEI/DNA复合物体系.本文开发的基因载体改性方法不仅可以对复合物颗粒表面的正电荷进行遮蔽,从而降低复合物体系对非目标组织的非特性异作用;同时引入的RGD靶向短肽还可以提高载体的靶向性,这一改性策略对推动阳离子聚合物基因载体在体内的应用具有重要意义.  相似文献   

6.
人类多种疾病都与基因的结构或功能改变密切相关,基因治疗已经成为改善人类健康的新兴医学治疗手段,基因治疗的关键在于构筑高效的基因载体.发展生物可降解、具有高转染效率和低毒性的阳离子聚合物基因载体已经成为当今该领域的主要任务.本文主要介绍了对细胞内外的环境差异和外界刺激具有响应性的阳离子聚合物基因载体的合成方法,实现DNA在细胞内的有效释放;构筑不同拓扑结构的聚合物,运用聚合物的拓扑结构来调节DNA与聚合物组装复合体形貌,实现DNA的可控压缩和提高载体的转染效率;通过两亲性阳离子聚合物的自组装形成稳定的阳离子纳米胶束,增加聚合物表面电荷密度,从而有效增强聚合物和DNA结合能力,实现低正负电荷比条件下的DNA压缩和基因的高效表达.  相似文献   

7.
以聚谷氨酸为骨架, 用低分子量聚乙烯亚胺胺解聚谷氨酸苄酯, 得到聚谷氨酸-g-聚乙烯亚胺, 用异佛尔酮二异氰酸酯将聚乙二醇单甲醚偶联到聚谷氨酸-g-聚乙烯亚胺上, 合成了梳状聚阳离子基因载体聚谷氨酸-g-(聚乙烯亚胺-b-聚乙二醇). 利用核磁共振氢谱、 激光粒度分析仪、 Zeta电位仪和凝胶电泳对聚阳离子载体及其与质粒脱氧核糖核酸(pDNA)形成的复合物进行了表征. 通过噻唑蓝(MTT)细胞毒性测试、 绿色荧光蛋白质粒pEGFP-C1及荧光素酶质粒pGL3体外转染实验考察了载体的细胞毒性及基因转染效率. 结果表明, 当聚乙烯亚胺中N原子和DNA中P原子的摩尔比(N/P)大于5时, 载体能很好地包裹DNA, 载体与DNA形成的复合物粒径约为130 nm, Zeta电位约为28 mV; 通过MTT实验和体外质粒转染实验显示出载体在测量范围内具有极低的细胞毒性和较高的转染效率.  相似文献   

8.
基于脂质体的纳米基因载体的研究进展   总被引:1,自引:0,他引:1  
基因治疗是指将外源基因导入目标细胞,用以修正因基因缺陷和异常导致的疾病,达到治疗疾病的目的。 外源基因在细胞中高效、持续地表达是基因治疗成功的关键,这与载体的选择息息相关。 随着科技的发展,脂质体纳米复合物作为基因载体受到人们广泛关注,其具有功能多样、易于修饰、生物相容性好、转染效率高等优点。 本文介绍了脂质体的结构特点,并对磁性纳米、金纳米、量子点、壳聚糖、上转换纳米与脂质体的复合物作为基因载体进行综述和展望。  相似文献   

9.
由于自体血管供应不足,人工血管在心血管疾病的临床治疗中发挥着非常重要的作用。人工血管由于表面缺乏活性内皮层,经常面临术后再狭窄等问题,严重限制了其在临床中的应用。人工血管内皮化能够提高其血液相容性并维持其长期通畅率。大量研究表明,多功能基因递送系统可以促进血管内皮细胞增殖,从而实现人工血管快速内皮化。近年来,功能多肽和阳离子聚合物为开发低毒且高效的多功能基因递送系统提供了有效途径。本文详细介绍了目前用于血管内皮细胞基因转染的功能多肽和聚阳离子基因载体,重点阐述了促进内皮细胞增殖的多功能逐级靶向基因递送系统的研究进展,对采用基因转染方式促进人工血管快速内皮化进行了分析和展望。  相似文献   

10.
基因治疗,就是将正常基因导入体内以弥补缺失或替换突变基因来医治囊性纤维化和血友病等[1]多种疾病.而制备高效安全的基因转染载体至今仍是基因治疗的一个瓶颈.非病毒类载体的基因转染效率目前虽不高,但由于其具有低毒、低免疫反应、无基因插入片断大小限制、制备方便、易保存  相似文献   

11.
The ability of non-viral gene delivery systems to overcome extracellular and intracellular barriers is a critical issue for future clinical applications of gene therapy. In recent years much effort has been focused on the development of a variety of DNA carriers, and cationic liposomes have become the most common non-viral gene delivery system. Solid-phase synthesis was used to produce three libraries of polyamine-based cationic lipids with diverse hydrophobic tails. These were characterised, and structure-activity relationships were determined for DNA binding and transfection ability of these compounds when formulated as cationic liposomes. Two of the cationic lipids produced high-efficiency transfection of human cells. Surprisingly, these two compounds were from the library with two headgroups and one aliphatic tail, a compound class regarded as detergent-like and little investigated for transfection. These cationic lipids are promising reagents for gene delivery and illustrate the potential of solid-phase synthesis methods for lipoplex discovery.  相似文献   

12.
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low‐molecular‐weight fluorodendrimers for efficient gene delivery. These materials self‐assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.  相似文献   

13.
In recent years,various carriers for gene delivery nave been developed for biomedical applications.Among all kinds of gene carriers,cationic polymeric carriers for delivery therapeutic gene as non-viral carriers have received growing interests due to their improved high transfection efficiency with the relative safety.In particular,the advancement of novel polymeric gene carriers has gained much progress in the development of effective anticancer therapy.Herein,this review focused on the development of cationic polymeric carriers for cancer therapy,including polyethylenimine(PEI),polyamidoamine(PAMAM) dendrimers,polylysine(PLL),chitosan and modified cationic polymers.And recent progresses in the development of novel polymeric carriers for gene delivery,such as targeted gene carriers,responsive gene carriers and multifunctional gene carriers,were summarized.Finally,the future perspectives in the development of novel polymeric carriers for delivery gene were presented.  相似文献   

14.
When considering a family of cationic lipids designed for gene delivery, the nature of the cationic polar head probably has a great influence on both the transfection efficacy and toxicity. Starting from a cationic lipothiophosphoramidate bearing a trimethylammonium headgroup, we report herein the impact on gene transfection activity of the replacement of the trimethylammonium moiety by a trimethylphosphonium or a trimethylarsonium group. A series of three different human epithelial cell lines were used for the experimental transfection studies (HeLa, A549 and 16HBE14o(-)). The results basically showed that such structural modifications of the cationic headgroup can lead to a high transfection efficacy at low lipid/DNA charge ratios together with a low cytotoxicity. It thus appears that the use of a trimethylarsonium cationic headgroup for the design of efficient gene carriers, which was initially proposed in the lipophosphoramidate series, can be extended to other series of cationic lipids and might therefore have great potential for the development of novel non-viral vectors in general.  相似文献   

15.
Polymers for DNA delivery   总被引:4,自引:0,他引:4  
Nucleic acid delivery has many applications in basic science, biotechnology, agriculture, and medicine. One of the main applications is DNA or RNA delivery for gene therapy purposes. Gene therapy, an approach for treatment or prevention of diseases associated with defective gene expression, involves the insertion of a therapeutic gene into cells, followed by expression and production of the required proteins. This approach enables replacement of damaged genes or expression inhibition of undesired genes. Following two decades of research, there are two major methods for delivery of genes. The first method, considered the dominant approach, utilizes viral vectors and is generally an efficient tool of transfection. Attempts, however, to resolve drawbacks related with viral vectors (e.g., high risk of mutagenicity, immunogenicity, low production yield, limited gene size, etc.), led to the development of an alternative method, which makes use of non-viral vectors. This review describes non-viral gene delivery vectors, termed "self-assembled" systems, and are based on cationic molecules, which form spontaneous complexes with negatively charged nucleic acids. It introduces the most important cationic polymers used for gene delivery. A transition from in vitro to in vivo gene delivery is also presented, with an emphasis on the obstacles to achieve successful transfection in vivo.  相似文献   

16.
The development of polymers with low toxicity and efficient gene delivery remains a significant barrier of nonviral gene therapy. Modification and tuning of chemical structures of carriers is an attractive strategy for efficient nucleic acid delivery. Here, polyplexes consisting of plasmid DNA (pDNA) and dodecylated or non‐dodecylated polysuccinimide (PSI)‐based polycations are designed, and their transfection ability into HeLa cells is investigated by green fluorescent protein (GFP) expressing cells quantification. All cationic polymers show lower cytotoxicity than those of branched polyethyleneimine (bPEI). PSI and bPEI‐based polyplexes have comparable physicochemical properties such as size and charge. Interestingly, a strong interaction between dodecylated polycations and pDNA caused by the hydrophobic moiety is observed in dodecylated PSI derivatives. Moreover, the decrease of GFP expression is associated with lower dissociation of pDNA from polyplexes according to the heparin displacement assay. Besides, a hydrophobization of PSI cationic derivatives with dodecyl side chains can modulate the integrity of polyplexes by hydrophobic interactions, increasing the binding between the polymer and the DNA. These results provide useful information for designing polyplexes with lower toxicity and greater stability and transfection performance.  相似文献   

17.
The leading principle of non-viral delivery systems for gene therapy is to mediate high levels of gene expression with low cytotoxicity. Nowadays, biodegradable nanoparticles formulated with poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) were wildly developed. However, the relative lower gene transfection efficiency and higher cytotoxicity still remained critical problems. To address these limitations, PLA-PEG nanoparticles have been composited with other components in their formulation. Here, a novel cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was fabricated onto PLA-PEG nanoparticles as a charge modifier to improve the transfection efficiency and cytotoxicity. The obtained cationic LHLN modified PLA-PEG nanoparticles (LHLN-PLA-PEG NPs) could condense pDNA thoroughly via electrostatic force, leading to the formation of the LHLN-PLA-PEG NPs/pDNA complexes (NPs/DNA complexes). The nanoparticles obtained have been characterized in relation to their physicochemical and biological properties, and the results are extremely promising in terms of low cell toxicity and high transfection efficiency. These results indicated that the novel cationic LHLN modified PLA-PEG nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice.  相似文献   

18.
During the last two decades, cationic polymers have become one of the most promising synthetic vectors for gene transfection. However, the weak interactions formed between DNA and cationic polymers result in low transfection efficacy. Furthermore, the polyplexes formed between cationic polymers and DNA generally exhibit poor stability and toxicity because of the large excess of cationic polymer typically required for complete DNA condensation. Herein, we report the preparation of a novel class of bioreducible cationic nanomicelles by the use of disulfide bonds to connect the cationic shell to the fluorocarbon core. These bioreducible nanomicelles form strong interactions with DNA and completely condense DNA at an N/P ratio of 1. The resulting nanomicelle/DNA polyplexes exhibited high biocompatibility and performed very effectively as a gene‐delivery system.  相似文献   

19.
基因治疗是指利用一种载体将健康的基因载入细胞替换致病的基因.由基因缺陷导致的人类疾病达1200多种,最合理的选择是采用基因替换的方法进行治疗.基因治疗的关键问题是解决"使用何种载体才能安全有效地将治疗基因载入靶细胞".非病毒基因载体主要是一些有机阳离子物种,一直受到极大重视;近年来,磷酸钙、纳米粒子和金属配合物释放核酸的功能也开始受到关注.本文总结了金属配合物作为非病毒基因载体使用的研究进展,希望由此理解配合物释放核酸的优势和不足之处.  相似文献   

20.
Cationic polymers with high charge density could effectively condense the DNA and achieve gene transfection; however, it often brings non-negligible cytotoxicity. Notably, the high charge density gene vector fails in the serum environment, limiting further application in vivo. In this paper, an efficient and reliable non-viral gene vector of poly (amidoamine) (PAA) was designed by introducing diacryolyl-2,6-diaminopyridine (DADAP) onto the PAA backbone through Michael-addition polymerization, which provides high transfection efficiency in a serum-containing environment. Diacryolyl-2,6-diaminopyridine and cationic parts provided multiple interactions between gene vectors and DNA, including hydrogen bond and electrostatic interactions. The introduction of hydrogen bonding can effectively reduce the charge density of polyplexes without reducing the DNA condensing ability, incorporating the diaminopyridine group and cationic part in PAA chains successfully consolidated cellular uptake, endosome destabilization, and transfection efficiency for the PAA/DNA complexes with low cytotoxicity. The constructed vector with multiple interactions presented 6 times higher transfection efficiency in serum-free and 9 times in serum-containing environment than that of branched polyethyleneimine (PEI 25K) in 293T cells in vitro. Therefore, introducing the hydrogen band to form low charge density polyplexes with high transfection efficiency and low cytotoxicity has a great potential in gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号