首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The development of polymers with low toxicity and efficient gene delivery remains a significant barrier of nonviral gene therapy. Modification and tuning of chemical structures of carriers is an attractive strategy for efficient nucleic acid delivery. Here, polyplexes consisting of plasmid DNA (pDNA) and dodecylated or non‐dodecylated polysuccinimide (PSI)‐based polycations are designed, and their transfection ability into HeLa cells is investigated by green fluorescent protein (GFP) expressing cells quantification. All cationic polymers show lower cytotoxicity than those of branched polyethyleneimine (bPEI). PSI and bPEI‐based polyplexes have comparable physicochemical properties such as size and charge. Interestingly, a strong interaction between dodecylated polycations and pDNA caused by the hydrophobic moiety is observed in dodecylated PSI derivatives. Moreover, the decrease of GFP expression is associated with lower dissociation of pDNA from polyplexes according to the heparin displacement assay. Besides, a hydrophobization of PSI cationic derivatives with dodecyl side chains can modulate the integrity of polyplexes by hydrophobic interactions, increasing the binding between the polymer and the DNA. These results provide useful information for designing polyplexes with lower toxicity and greater stability and transfection performance.  相似文献   

2.
Cationic polymers have received much attention as promising nonviral vectors for gene transfer. However, development of polymers with low cell toxicities and high transfection efficiencies continue to be a significant problem and a major hurdle to their success. Poly‐D /L aspartate‐diethylenetriamine poly(D /L Asp‐DET) polymers were synthesized and evaluated as nonviral gene delivery agents. Poly(D /L Asp‐DET) polymers display endosome buffering capacity. The polymers condense plasmid DNA above N:P ratios of 1 and form polyplex particles of ~50–100 nm, with zeta potentials between neutral and +40 mV. Transmission electron microscopy shows the polyplexes to be uniform in size and shape. Polyplexes maintain the structural integrity of DNA following incubation in nucleases and also show high transfection efficiencies with minimal toxicity in both HCT‐116 and PC‐3 cell culture. However, it is found that these poly(D /L Asp‐DET)/DNA polyplexes immediately aggregate in salt and serum conditions, making them unsuitable for use in vivo. Therefore, the polyplexes were further modified by covalent addition of polyethylene glycol (PEG). Introduction of this second step produces PEG‐polyplexes of uniform size (below 100 nm), with neutral zeta potentials that are also stable in both salt and serum conditions. These results suggest poly(D /L Asp‐DET) cationic polymers as potentially safe and efficient nonviral gene delivery agents. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Cationic polymers with high charge density could effectively condense the DNA and achieve gene transfection; however, it often brings non-negligible cytotoxicity. Notably, the high charge density gene vector fails in the serum environment, limiting further application in vivo. In this paper, an efficient and reliable non-viral gene vector of poly (amidoamine) (PAA) was designed by introducing diacryolyl-2,6-diaminopyridine (DADAP) onto the PAA backbone through Michael-addition polymerization, which provides high transfection efficiency in a serum-containing environment. Diacryolyl-2,6-diaminopyridine and cationic parts provided multiple interactions between gene vectors and DNA, including hydrogen bond and electrostatic interactions. The introduction of hydrogen bonding can effectively reduce the charge density of polyplexes without reducing the DNA condensing ability, incorporating the diaminopyridine group and cationic part in PAA chains successfully consolidated cellular uptake, endosome destabilization, and transfection efficiency for the PAA/DNA complexes with low cytotoxicity. The constructed vector with multiple interactions presented 6 times higher transfection efficiency in serum-free and 9 times in serum-containing environment than that of branched polyethyleneimine (PEI 25K) in 293T cells in vitro. Therefore, introducing the hydrogen band to form low charge density polyplexes with high transfection efficiency and low cytotoxicity has a great potential in gene delivery.  相似文献   

4.
The efficiency of cationic polymers as transfectants is thought to be closely related to their DNA association/dissociation properties. An incomplete polymer-DNA dissociation could explain the relatively low gene expression obtained with p(DMAEMA) polymers. Our approach was to synthesize a p(DMAEMA) analogue, p(DMAPEMA), bearing an hydrolyzable cationic group incorporated into the pendant chain with a view to improving transfection. The complexation of DNA with both polymers was studied by agarose gel electrophoresis, size and zeta potential measurements, as well as the dissociation of the polyplexes, after treatment by an anionic polymer, sodium hydroxide or heat. The transfection efficiencies of the polyplexes were evaluated with 293T and BHK21 cells in comparison with Exgen 500. P(DMAPEMA) polymers were able to complex DNA and to release it in a free intact form after an alkaline treatment or storage at 37 degrees C. Poly(aspartic acid) was unable to dissociate p(DMAPEMA) based polyplexes, in contrast to p(DMAEMA) ones. No transfection was obtained with p(DMAPEMA) with both cell lines. A slow hydrolysis under physiological conditions resulting in the absence of DNA unpacking or endosomal entrapment could explain these results. Better transfection results were obtained with polyplexes which were able to be dissociated by electrostatic interactions rather than ones which required the hydrolysis mechanism to release free DNA into cells. Scheme of hydrolyzable p(DMAPEMA) polymer.  相似文献   

5.
用邻位苄基溴与双胺进行门舒特金反应,合成了2种线性的季铵盐阳离子聚合物.其中,含有酚基酯键的阳离子聚合物,一旦进入细胞后,可以在细胞内的酯酶催化下快速水解,使得聚合物自降解断裂为不带电的非季铵盐小分子,从而快速释放DNA,最终达到提高转染效率的目的.通过对复合物纳米颗粒的粒径和电势测定,证明了这2种阳离子聚合物都能够有效地结合DNA形成表面带正电的复合物纳米颗粒.凝胶阻滞电泳实验表明,所合成的阳离子聚合物都能稳定地包裹DNA.而在酯酶条件下,含有酚基酯键的阳离子聚合物可以发生降解,使得纳米复合物释放出DNA.同时,含有酚基酯键的阳离子聚合物由于其独特的可降解性,相比于PEI,降低了细胞毒性.在体外细胞转染实验中,2种阳离子聚合物都有较好的转染效果.其中酯酶响应的载体在高N/P下依然表现出较高的转染效率,说明该阳离子载体能够在细胞内有效降解并释放出DNA.  相似文献   

6.
Water‐soluble cationic polymers, poly(histamine acrylamide)s (PHAs), with superior buffer capacity at the endosomal pH range were designed, prepared, and investigated for non‐viral gene transfection. PHAs were obtained with molecular weights ranging from 9.2 to 28.7 kDa through controlled radical polymerization of histamine acrylamide (HA). Acid–base titration results displayed that all PHA polymers had a remarkably high buffer capacity of about 70% at pH 5.1–7.2. 12.7–28.7 kDa PHAs were able to effectively condense DNA into nano‐sized (<220 nm) polyplexes with moderate positive surface charges (+13–+19 mV) at N/P ratios ≥10/1. CCK assays indicated that polyplexes of 12.7 and 17.5 kDa PHAs were non‐toxic to COS‐7 cells up to a tested N/P ratio of 20/1. Interestingly, the in vitro transfection using pCMV‐Luc and pEGFP‐C1 plasmid DNA as reporter genes showed that polyplexes of 12.7 kDa PHA formed at an N/P ratio of 20/1 mediated efficient transfection in COS‐7 cells under 10% serum conditions, with transfection efficiencies comparable to that of 25 kDa polyethylenimine control. Their versatile design of structures, controlled synthesis, low cytotoxicity, and high transfection activity render PHA‐based cationic polymers particularly interesting for the development of safe and efficient non‐viral gene delivery systems. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

7.
We examined a series of novel cationic MPC-based (2-methacryloyloxyethyl phosphorylcholine) copolymers as vectors for gene delivery, with emphasis on the assessment of the effects of the charge ratio (administered via pH variation) on the complex (polyplex) formation and the subsequent transfection efficiency. A combination of electrophoresis, dynamic light scattering, and small angle neutron scattering was used to characterize the structure and charge distribution of the polyplexes formed between the copolymer and the luciferase plasmid DNA. Polymers with larger hydrophobic side chains had lower p K a values and tended to aggregate more strongly. For a given copolymer, electrostatic interaction was the main driving force for the formation of the nanopolyplexes. When the cationic copolymers were in excess, the majority of the polyplexes formed was neutral, and only a small faction of them carried net positive charges. Polyplexes formed under excess copolymer protected the DNA from restriction enzyme digestion. As the copolymers were weak polyelectrolytes, the pH had a distinct effect on the structure and charge distribution of the polyplexes formed. Below the p K a, the copolymers were found to bind with the plasmid DNA in the form of unimers, while above the p K a, the copolymers self-aggregated and complexed with DNA in the form of micelles. It was subsequently found that unimer/DNA polyplexes were far more effective in the transfection of HEK293 cells than micellar DNA polyplexes. The results thus revealed that different hydrophobicities of the side chains in the copolymer series led to different nanostructuring and charge characteristics, which had a consequential effect on the transfection efficiency. This study provided useful insight into the molecular processes underlying polyplex formation and demonstrated a strong link between structural and physical properties of polyplexes and cell transfection efficiency.  相似文献   

8.
Cationic polymers bind DNA and form compacted nanoparticulates (i.e., polyplexes). Polyplexes augment DNA delivery into the cells as a nonviral method of gene therapy. DNA packing and release are the key factors in polyplex-mediated gene delivery, but they are poorly understood due to the lack of physical methods of investigation. We used time-resolved fluorescence spectroscopy to study poly(ethylenimine) (PEI) and poly(L-lysine) (PLL) polyplexes. Analysis of fluorescence lifetimes and time-resolved spectra revealed that DNA exists in several different states in PEI polyplexes and only in one tightly bound state in PLL polyplexes. The observed difference in the nature of the polyplexes may explain why PEI releases DNA more easily than PLL even though both polycations condense DNA effectively. The present method utilizing time-resolved fluorescence spectroscopy gives information on the specific interactions between DNA and the cationic polymers in the polyplexes. This kind of information is very important in the development of biologically effective nonviral systems for DNA delivery.  相似文献   

9.
The present contribution is focused on feasibility of using comb‐like copolymers of polyethylenimine with poly(2‐ethyl‐2‐oxazoline) (LPEI‐comb‐PEtOx) with varying grafting densities and degrees of polymerization of PEI and PEtOx to deliver DNA molecules into cells. The copolymers form small and well‐defined particles at elevated temperatures, which are used as platforms for binding and condensing DNA. The electrostatic interactions between particles and DNA result in formation of sub‐100 nm polyplex particles of narrow size distribution and different morphology and structure. The investigated gene delivery systems exhibit transfection efficiency dependent on the copolymer chain topology, shape of the polyplex particles, and internalization pathway. Flow cytometry shows enhanced transfection efficiency of the polyplexes with elongated and ellipsoidal morphology. The preliminary biocompatibility study on a panel of human cell lines shows that pure copolymers and polyplexes thereof are practically devoid of cytotoxicity.  相似文献   

10.
Low transfection efficiency is always an issue when cationic polymers are used as a nonviral gene vector in the physiological condition, especially in the presence of proteins. A cationic magnetic nanoparticle (MNP) may be an alternative to solve this problem because a magnetic field can help to attract the MNP and internalize it into cells. The aim of this study was to determine the potency of polyethylenimine (PEI)-decorated MNPs for efficiently complexing and delivering plasmid DNA in vitro with the help of a magnetic field. PEI is associated with poly(acrylic acid)-bound superparamagnetic iron oxide (PAAIO) through electrostatic interactions (PEI-PAAIO). PEI-PAAIO formed stable polyplexes with pDNA in the presence and absence of 10% fetal bovine serum (FBS) and could be used for magnetofection. The effect of a static magnetic field on the cytotoxicity, cellular uptake, and transfection efficiency of PEI-PAAIO/pDNA was evaluated with and without 10% FBS. Magnetofection efficacy in HEK 293T cells and U87 cells containing 10% FBS was significantly improved in the presence of an external magnetic field. The amount of internalized iron was quantitatively measured using an inductively coupled plasma-optical emission spectrometer and directly visualized using Prussian blue staining. The internalized pDNA was visualized using a confocal laser scanning microscope.  相似文献   

11.
Non‐viral gene delivery vectors have emerged as potential alternatives in the field of gene therapy by replacing the biological viral vectors. DNA–cationic polymer complexes are one of the most promising systems to target many inborn or acquired diseases without the utilization of conventional drugs. Despite the excellent binding efficiency of cationic polymers, the gene transfection seems limited to date. In this work, a series of ammonium‐based block‐copolymers with different alkyl side chains (ethyl, butyl, and hexyl) and functionality (alcohol, amine, and alkyl) have been prepared to evaluate their capacity to deliver genetic material. First, different ionic liquid monomers with different pendent functional groups were prepared and characterized. Then, polyplexes elaborated with different polymers at several polymer DNA ratios (w/w) were characterized in terms of size, zeta potential, and DNA binding, release, and protection capacity. Finally, the transfection efficiency and cell viability was evaluated in ARPE19 cells. We found that only the systems containing the amine pendent group were able to transfect ARPE19 cell and, that this amine containing polymer was less cytotoxic even at high polymer/DNA ratios (30:1). In conclusion, our studies suggested that the proper selection of the pendent group substantially impacts overall transfection efficiency of cationic polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 280–287  相似文献   

12.
In this work, we present the preparation of water‐soluble poly(methacrylate)s with pendant cationic L ‐lysines PHMLs(6–30 K). Plasmid DNA binding affinity as well as particle sizes and zeta potentials of the polyplexes were examined for these PHML vectors, and their cytotoxicities were assayed with HeLa cells by CCK‐8 and lactate dehydrogenase kits. Gene transfection efficacy and intracellular uptake of the polyplexes by the PHML vectors were also studied with HeLa cells. As a result, it was revealed that the low cytotoxic PHMLs tended to exhibit gene transfection efficiencies significantly higher than those of the linear structural PLL (15–30 K) control, in particular the molecular weight of a PHML vector remarkably influenced its pDNA binding affinity, transfection efficacy and intracellular uptake of the polyplexes.

  相似文献   


13.
Gene therapy requires the development of non-toxic and highly efficient delivery systems for DNA and RNAi. Polycations, especially dendrimers, have shown enormous potential as gene transfer vehicles, displaying minimal toxicity with a broad range of cell lines. In this paper, a total of 13 dendrimers, up to G3.0, were constructed from AB(3) type isocyanate monomers using solid phase methodology and evaluated for transfection activity. Among the library of compounds prepared, a G3.0 dendrimer displayed comparable activity to Superfect. Gel retardation assays demonstrated that all of the compounds completely bound plasmid DNA, indicating the efficient formation of complexes between DNA and the dendrimers. A "transfection microarray" approach was developed for screening these compounds as well as a panel of lipoplexes (complexes of DNA with cationic lipids) and polyplexes (complexes of DNA with synthetic polycationic polymers), in 3D solution like micro-assay). Five cationic lipids with a cholesterol tail showed stronger or comparable transfection activity relative to Effectene. The new, micro-array screening method was rapid and miniaturized, offering the potential of high throughput screening of large libraries of transfection candidates, with thousands of library members per array, and the ability to rapidly screen a broad range of cell types.  相似文献   

14.
A series of the N-substituted polyaspartamides possessing repeating aminoethylene units in the side chain was prepared in this study to identify polyplexes with effective endosomal escape and low cytotoxicity. All cationic N-substituted polyaspartamides showed appreciably lower cytotoxicity than that of commercial transfection reagents. Interestingly, a distinctive odd-even effect of the repeating aminoethylene units in the polymer side chain on the efficiencies of endosomal escape and transfection to several cell lines was observed. The polyplexes from the polymers with an even number of repeating aminoethylene units (PA-Es) achieved an order of magnitude higher transfection efficiency, without marked cytotoxicity, than those of the polymers with an odd number of repeating aminoethylene units (PA-Os). This odd-even effect agreed well with the buffering capacity of these polymers as well as their capability to disrupt membrane integrity selectively at endosomal pH, leading to highly effective endosomal escape of the PA-E polyplexes. Furthermore, the formation of a polyvalent charged array with precise spacing between protonated amino groups in the polymer side chain was shown to be essential for effective disruption of the endosomal membrane, thus facilitating transport of the polyplex into the cytoplasm. These data provide useful knowledge for designing polycations to construct safe and efficient nonviral gene carriers.  相似文献   

15.
申有青 《高分子科学》2016,34(1):94-103
Chirality is a key factor in the biological activity of many biomolecules. Poly(L-lysine)(PLL), a polypeptide synthesized from L-lysine, is one of the mostly used cationic polymers for gene delivery. The effect of chirality of polylysine(PL) on its gene delivery remains unknown. Herein, we prepared three polylysines(PLs) with the similar molecular weight but different backbone chiralities including poly(L-lysine)(PLL), poly(D-lysine)(PDL) and poly(DL-lysine)(PDLL). The side chains of each PL were modified with propylene oxide(PO) of different chiralities including(R)PO,(S)PO and(R,S)PO. These PL-POs with distinct chirality in main and side chains could condense p DNA into polyplexes. The polyplexes had approximately the same size, zeta potential and binding ability, but showed distinct gene transfection efficiency. We found that the PLs of L-configuration in the main chain had higher transfection efficiency than that of D or DL configuration due to their faster cellular uptake, while the side chain chirality had no effect on transfection efficiency.  相似文献   

16.
合成了二茂铁接枝聚乙烯亚胺( PEI-Fc),利用二茂铁与β-环糊精的主客体嵌套作用制备了环糊精修饰聚乙烯亚胺,核磁测定结果显示,每条PEI-Fc链上通过主客体作用嵌套的CD平均为26个.这种基于弱相互作用力的β-环糊精修饰聚乙烯亚胺能有效诱导DNA分子的缔合,在N/P值达到3以上时,可形成表面为正电荷、粒径为150 ~ 250 nm的球形粒子.在含10%胎牛血清的DMEM体外细胞培养基中,由于培养基中的蛋白质能够在粒子表面发生静电吸附,PEI-Fc/CD/DNA基因微载体显示出良好的稳定性.HEK293细胞培养结果显示,以表达绿色荧光蛋白的质粒pEGFP为模型,以N/P值为10的PEI/DNA组装体作为对照,N/P值为3、5和10的PEI-Fc/CD/DNA组装体的转染效率均达到对照组的2~3倍,这种基于主客体组装构建的环糊精修饰基因微载体显著提高了基因转染效率.  相似文献   

17.
The last several years have seen a significant increase in the number of reports describing the use of cationic polymers to design new materials and nanoscale assemblies that promote the surface-mediated delivery of DNA to cells and tissues. In general, these approaches fall into one of two broad categories: (i) methods based upon the physical adsorption of pre-formed, colloidal aggregates of cationic polymer and DNA (polyplexes) to surfaces, and (ii) methods for the layer-by-layer adsorption of DNA and cationic polymers on surfaces to fabricate multilayered thin films that provide control over the release of DNA into solution or to cells. In this Opinion, we discuss several recent examples of each of these approaches and provide commentary on ways in which the physical and chemical behaviours of cationic polymers have played key roles and present future opportunities to develop new methods for localized and surface-mediated cell transfection in vitro and in vivo.  相似文献   

18.
崔亮  李洋  侯小东  宫文娟  徐宇虹  曹阿民 《化学学报》2007,65(19):2181-2186
采用液相多肽合成法制备得到窄分子量分布、结构可控的生物相容性聚乙二醇嵌段共聚树枝状聚赖氨酸阳离子功能大分子(PEG-b-Dendritic PLL). 运用1H NMR核磁共振、凝胶电泳以及荧光淬灭滴定手段对所得阳离子两嵌段大分子的化学结构及其与质粒DNA (pDNA)结合作用与复合行为进行了研究. 结果表明聚乙二醇嵌段树枝状聚赖氨酸与pDNA分子可以在缓冲溶液中形成稳定的胶束, pDNA与阳离子树枝赖氨酸嵌段通过静电相互作用形成胶束核, 其水溶性聚乙二醇嵌段形成水溶性胶束壳, 提高了阳离子大分子/pDNA复合胶束的稳定性. 同时发现随着阳离子嵌段树枝状赖氨酸代数的增加, 阳离子两嵌段大分子与pDNA的结合作用增强, 有利于其作为基因转染生物功能载体的应用.  相似文献   

19.
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low‐molecular‐weight fluorodendrimers for efficient gene delivery. These materials self‐assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.  相似文献   

20.
Dendritic polycation (PG‐BEN) using polyglycerol as a core and secondary amine shell consisting of N1,N11‐bisethylnorspermine (BEN) was synthesized. Polymers containing primary amines in the shell (PG‐Nor and PG‐NH2) were synthesized as controls to allow evaluation of the shell effect on physicochemical and transfection properties of the polymers. All studied polymers condensed DNA and formed polyplexes with sizes less than 110 nm. PG‐BEN and PG‐Nor had a similar transfection activity that was fully comparable with that of the control polyethylenimine. Amongst the studied polymers, PG‐BEN demonstrated the lowest cytotoxicity, suggesting that PG‐BEN is a promising gene delivery vector with favorable transfection/toxicity profile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号