首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Separation of minor compounds especially with similar polarities and structures from complex samples is a challenging work. In the present study, an efficient method was successfully established by macroporous resin column chromatography, medium‐pressure liquid chromatography, and high‐speed countercurrent chromatography for separation of four minor flavonoids from barley seedlings. Macroporous resin column chromatography and medium‐pressure liquid chromatography were used for enrichment of these four flavonoids. High‐pressure liquid chromatography analysis showed the total content of these four flavonoids increased from 2.2% in the crude extract to 95.3% in the medium‐pressure liquid chromatography fraction. It was indicated that the combination of macroporous resin column chromatography and medium‐pressure liquid chromatography could be a practicable strategy for enrichment of minor compounds from complex sample. Then, high‐speed countercurrent chromatography was employed for separation of these four flavonoids using ethyl acetate/n‐butanol/water (0.1% glacial acetic acid) (4:1:5, v/v/v) as solvent system. As a result, four flavonoids including two isomers with purities higher than 98% were obtained. Interestingly, two flavonoids existing in one high‐pressure liquid chromatography peak were also successfully separated. All these indicated high‐speed countercurrent chromatography had great potential for separation of compounds with similar structures and polarities. This study provides a reference for efficient enrichment and separation of minor compounds from complex sample.  相似文献   

2.
Off‐line comprehensive two‐dimensional reversed‐phase countercurrent chromatography with high‐performance liquid chromatography was investigated in separation of crude ethanol extract from traditional Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc. Two‐dimensional contour plots for countercurrent chromatography with high‐performance liquid chromatography was obtained after comprehensive separation was completed. Total peak capacity was evaluated and approximately 810 peaks were obtained through a comprehensive two‐dimensional separation. A highly orthogonality of 52.23% and a large separation space occupancy of 88.86% were achieved. Meanwhile, it was found that several components could be well separated by countercurrent chromatography while they could not be separated by high‐performance liquid chromatography, and vice versa, which further indicated the orthogonality of the two separation methods. The off‐line comprehensive two‐dimensional countercurrent chromatography with high‐performance liquid chromatography provided a promising and powerful method for separation of complex natural products.  相似文献   

3.
10‐Deacetylbaccatin III, an important semisynthetic precursor of paclitaxel and docetaxel, can be extracted from Taxus wallichiana Zucc. A process for the isolation and purification of 10‐deacetylbaccatin III ( 1 ), baccatin III ( 2 ), and 7β‐xylosyl‐10‐deacetyltaxol ( 3 ) from the leaves and branches of Taxus wallichiana Zucc. via macroporous resin column chromatography combined with high‐speed countercurrent chromatography or reversed‐phase flash chromatography was developed in this study. After fractionation by macroporous resin column chromatography, 80% methanol fraction was selected based on high‐performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis. A solvent system composed of n‐hexane, ethyl acetate, methanol, and water (1.6:2.5:1.6:2.5, v/v/v/v) was used for the high‐speed countercurrent chromatography separation at a flow rate of 2.5 mL/min. The reversed‐phase flash chromatography separation was performed using methanol/water as the mobile phase at a flow rate of 3 mL/min. The high‐speed countercurrent chromatography separation produced compounds 1 (10.2 mg, 94.4%), 2 (2.1 mg, 98.0%), and 3 (4.6 mg, 98.8%) from 100 mg of sample within 110 min, while the reversed‐phase flash chromatography separation purified compounds 1 (9.8 mg, 95.6%) and 3 (4.9 mg, 97.9%) from 100 mg of sample within 120 min.  相似文献   

4.
The enantioselective separation of pheniramine was studied by a high‐speed countercurrent chromatography method using β‐cyclodextrin derivatives as a chiral selector. Several key variables, for instance, type of organic solvent and chiral selector, concentration of chiral selector, pH value of aqueous phase, and temperature on the enantioselectivity, were investigated systematically by liquid–liquid extraction experiments. Combining the results of extraction experiments and high‐speed countercurrent chromatography, the most suitable conditions for separation of pheniramine enantiomers were obtained with the two‐phase system that consisted of isobutyl acetate/aqueous phase, containing 0.02 mol/L carboxymethyl‐β‐cyclodextrin, pH 8.50 at 278.15 K. Under the optimal conditions, pheniramine enantiomer was successfully resolved after four cycles of high‐speed countercurrent chromatography. By using high‐performance liquid chromatography to analyze the fractions, the purities of both (+)‐pheniramine and (–)‐pheniramine were over 99% and the recovery of this method was up to 85–90%.  相似文献   

5.
An effective high‐speed countercurrent chromatography method was successfully established by using ionic liquids as the modifier of the two‐phase solvent system. Adding a small amount of ionic liquids significantly shortens the separation time and improves the separation efficiency. The conditions of ionic‐liquid‐modified high‐speed countercurrent chromatography including solvent systems, types and content of added ionic liquids, and ionic liquids posttreatment were investigated. The established method was successfully applied to separate alkaloids from lotus leaves using a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water/[C4mim][BF4] (1:5:1:5:0.15, v/v/v/v/v). Four alkaloids pronuciferine (1.7 mg), N‐nornuciferine (4.3 mg), nuciferine (3.1 mg), and roemerine (2.1 mg) were obtained with the purities of 90.53, 92.25, 99.86, and 98.63%, respectively, from 100 mg crude extract of lotus leaves. The results indicated that the ionic‐liquid‐modified high‐speed countercurrent chromatography method was suitable for alkaloid separation from lotus leaves and would be a promising method for the separation of alkaloids from other natural products.  相似文献   

6.
High‐speed countercurrent chromatography combined with preparative high‐performance liquid chromatography was successfully used to separate seven phenolic compounds from Stenoloma chusanum Ching. A biphasic solvent system composed of hexane/ethyl acetate/methanol/water (1:2:1:2, v/v) was used for the first step high‐speed countercurrent chromatography separation in elution–extrusion mode. A mobile phase composed of acetonitrile (18%) and pure water (82%) was used for further preparative high‐performance liquid chromatography purification. In total, the combined separation yielded seven compounds, including 3,4‐dihydroxy benzoic acid, 3,4‐dihydroxy benzaldehyde, esculetin, caffeic acid, syringic acid, luteolin, and apigenin, at a purity of over 90%. Esculetin was separated from Stenoloma chusanum Ching for the first time. The results suggest that the proposed combination method is a useful strategy for separating compounds from complex samples.  相似文献   

7.
Tocopherol homologues are important fat‐soluble bioactive compounds with high nutritional value. However, it is of great challenge to separate these homologues because of their high structural similarities. In this work, ionic‐liquid‐based countercurrent chromatography was used for the separation and purification of tocopherol homologues. Conventional countercurrent chromatography and ionic‐liquid‐based countercurrent chromatography solvent systems were evaluated in respect of partition coefficient, separation factor, and stationary phase retention factor to separate these targets. Kind of ionic liquids, amount of ionic liquid, and sample amount were systematically optimized. A novel countercurrent chromatography non‐aqueous biphasic system composed of n‐hexane‐methanol‐1‐butyl‐3‐methylimidazolium chloride was established. The baseline separation of tocopherol mixtures was obtained in one cycle process. The ionic liquid played a key role in the countercurrent chromatography separation, which resulted in difference of partition behavior of individual tocopherol in the whole system through different hydrogen‐bonding affinity. Finally, n‐hexane‐methanol‐1‐butyl‐3‐methylimidazolium chloride (5:5:3, v/v) water‐free biphasic system was successfully applied to separate tocopherol homologues from vegetable oil that was not achieved beforehand. This method can be widely employed to separate many similar molecules such as tocotrienols, tocomonoenols, and marine‐derived tocopherol in food samples.  相似文献   

8.
The separation of polar compounds by high‐speed countercurrent chromatography is still regarded as a challenge. In this study, an efficient strategy for the separation of three polar compounds from Rheum tanguticum has been successfully conducted by using high‐speed countercurrent chromatography. X‐5 macroporous resin chromatography was used for the fast enrichment of the target compounds. Then, the target fraction was directly introduced into high‐speed countercurrent chromatography for separation using ethyl acetate/glacial acetic acid/water (100:1:100, v/v/v) as the solvent system. Consequently, three polar compounds including gallic acid, catechin, and gallic acid 4‐O‐β‐d ‐(6′‐O‐galloyl) glucoside were obtained with purities higher than 98%. The results showed glacial acetic acid could be such an appropriate regulator for the ethyl acetate/water system. This study provides a reference for the separation of polar compounds from natural products by high‐speed countercurrent chromatography.  相似文献   

9.
In our present study, two groups of xanthones isomers (1‐hydroxy‐3,5,8‐trimethoxyxanthone and 1‐hydroxy‐3,7,8‐trimethoxyxanthone; 1,8‐dihydroxy‐3,7‐dimethoxyxanthone and 1,8‐dihydroxy‐3,5‐dimethanolxanthone) and other two xanthones (3‐methoxy‐1,5,8‐trihydroxyxanthone and 3,5‐dimethoxy‐1‐hydroxyxanthone) were separated from Swertia franchetiana . First, a solvent system composed of petroleum ether/methanol/water (2:1:0.6, v/v) was developed for the liquid–liquid extraction of these xanthones from the crude extract. Then, an efficient method was established for the one‐step separation of these six xanthones by high‐speed countercurrent chromatography using n‐hexane/ethyl acetate/methanol/ethanol/water (HEMEW; 6:4:4:2:4, v/v) as the solvent system. The results showed that liquid–liquid extraction could be well developed for efficient enrichment of target compounds. Additionally, high‐speed countercurrent chromatography could be a powerful technology for separation xanthones isomers. It was found ethanol could be a good methanol substitute when the HEMEW system could not provide good separation factors.  相似文献   

10.
The roots of Dipsacus asper Wall as a commonly used traditional Chinese medicine are used for tonifying liver and kidney and strengthening bones and muscles. However, an effective separation strategy for comprehensive and rapid separation of the main active compounds from the roots of D. asper is nonexistent. This investigation provided an effective separation method based on AB‐8 macroporous resin column chromatography using different ratios of ethanol in water and two different modes of high‐speed countercurrent chromatography with salt‐containing solvent system for rapid enrichment and separation from the roots of D. asper. The macroporous resin column chromatography was performed on AB‐8 resin using ethanol in water ratios of 10, 30, 40, 50, and 80% as the optimized enrichment conditions for iridoid glycosides and triterpenoid saponins with different polarities. For high‐speed countercurrent chromatography separation, the conventional and recycling modes were combined together to develop a strategy for 12 compounds ( 1 – 12 ) from the enriched parts of 30, 40, and 80% ethanol, including six high‐polarity iridoid glycosides ( 1 – 6 ) using inorganic salt‐containing solvent system and six triterpenoid saponins ( 7 – 12 ). Recycling high‐speed countercurrent chromatography separation was successfully applied to separate two isomers ( 9 and 10 ) after 11 cycles.  相似文献   

11.
A simple, rapid, and effective assay based on ultrafiltration combined with high‐performance liquid chromatography and high‐speed countercurrent chromatography was developed for screening and purifying alcohol dehydrogenase inhibitors from Glycyrrhiza uralensis root extract. Experiments were carried out to optimize binding conditions including alcohol dehydrogenase concentration, incubation time, temperature, and pH. By comparing the chromatograms, three compounds were found possessing alcohol dehydrogenase binding activity in Glycyrrhiza uralensis root. Under the target‐guidance of ultrafiltration combined with the high‐performance liquid chromatography experiment, liquiritin ( 1 ), isoliquiritin ( 2 ), and liquiritigenin ( 3 ) were separated by high‐speed countercurrent chromatography using ethyl acetate/methanol/water (5:1:4) as the solvent system. The alcohol dehydrogenase inhibitory activities of these three isolated compounds were assessed; compound 2 showed strongest inhibitory activity with an IC50 of 8.95 μM. The results of the present study indicated that the combinative method using ultrafiltration, high‐performance liquid chromatography and high‐speed countercurrent chromatography could be widely applied for the rapid screening and isolation of enzyme inhibitors from complex mixtures.  相似文献   

12.
To develop an efficient method for large preparation of javanicin from Fusarium solani, a rapid and simple method by high‐speed countercurrent chromatography was established based on average polarity (P′ values) and partition coefficients (K values) of crude samples. A suitable solvent system for high‐speed countercurrent chromatography was selected from many possible biphasic solvent systems. HSCCC was successfully applied to separate and purify javanicin, the main bioactive component of solid cultures of the fungus F. solani isolated from the fruiting body of Trametes trogii, with petroleum ether–ethyl acetate–methanol–water (4:3:2:1, v/v) as solvent system. A total amount of 40.6 mg of javanicin was obtained from 100 mg crude sample. The purity of javanicin was 92.2% with a recovery of 95.1%, as determined by high‐performance liquid chromatrography. The molecular structure was identified primarily by NMR and MS methods. The results indicated that high‐speed countercurrent chromatography could be a powerful technology for separating naphthoquinones from the solid cultures of the fungus F. solani. It is also of significance that the separation of javanicin from natural source was carried out for the first time utilizing high‐speed countercurrent chromatography.  相似文献   

13.
An efficient combination strategy based on high‐speed shear dispersing emulsifier technique and high‐performance countercurrent chromatography was developed for on‐line extraction and isolation of carotenoids from the fruits of Lycium barbarum. In this work, the high‐speed shear dispersing emulsifier technique has been employed to extract crude extracts using the upper phase of high‐performance countercurrent chromatography solvent system composed of n‐hexane?dichloromethane?acetonitrile (10:4:6.5, v/v) as the extraction solvent. At the separation stage, the high‐performance counter‐current chromatography process adopts elution–extrusion mode and the upper phase of the solvent system as stationary phase (reverse‐phase mode). As a result, three compounds including zeaxanthin, zeaxanthin monopalmitate, and zeaxanthin dipalmitate with purities of 89, 90, and 93% were successfully obtained in one extraction‐separation operation within 120 min. The targeted compounds were analyzed and identified by high‐performance liquid chromatography, mass spectrometry, and NMR spectroscopy. The results indicated that the present on‐line combination method could serve as a simple, rapid, and effective way to achieve weak polar and unstable compounds from natural products.  相似文献   

14.
This study describes the rapid separation of mulberry anthocyanins; namely, cyanidin‐3‐glucoside and cyanidin‐3‐rutinoside, using high‐performance countercurrent chromatography, and the establishment of a volumetric scale‐up process from semi‐preparative to preparative‐scale. To optimize the separation parameters, biphasic solvent systems composed of tert‐butyl methyl ether/n‐butanol/acetonitrile/0.01% trifluoroacetic acid, flow rate, sample amount and rotational speed were evaluated for the semi‐preparative‐scale high‐performance countercurrent chromatography. The optimized semi‐preparative‐scale high‐performance countercurrent chromatography parameters (tert‐butyl methyl ether/n‐butanol/acetonitrile/0.01% trifluoroacetic acid, 1:3:1:5, v/v; flow rate, 4.0 mL/min; sample amount, 200–1000 mg; rotational speed, 1600 rpm) were transferred directly to a preparative‐scale (tert‐butyl methyl ether/n‐butanol/acetonitrile/0.01% trifluoroacetic acid, 1:3:1:5, v/v; flow rate, 28 mL/min; sample amount, 5.0–10.0 g; rotational speed, 1400 rpm) to achieve separation results identical to cyanidin‐3‐glucoside and cyanidin‐3‐rutinoside. The separation of mulberry anthocyanins using semi‐preparative high‐performance countercurrent chromatography and its volumetric scale‐up to preparative‐scale was addressed for the first time in this report.  相似文献   

15.
A novel on‐line three‐dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1‐butyl‐3‐methylimidazolium chloride aqueous solution was selected as the solvent system. In the first‐dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second‐dimension high‐speed countercurrent chromatographic column for separation. In the third‐dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1 , 20.4 mg of compound 2 , 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic‐liquid‐based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties.  相似文献   

16.
Five terpenoids, including two new ones, 3,7‐dioxo‐tirucalla‐8,24‐dien‐21‐oic acid ( 2 ) and 3α‐acetoxyl‐7‐oxo‐tirucalla‐8,24‐dien‐21‐oic acid ( 3 ), and three known ones, boscartol A ( 1 ), 11‐keto‐β‐boswellic acid ( 4 ), and acetyl‐11‐keto‐boswellic acid ( 5 ), have been extracted by the ultrapressure extraction and purified by pH‐zone‐refining countercurrent chromatography and high‐speed countercurrent chromatography from olibanum. For ultrapressure extraction, the optimal condition including 200 MPa of extraction pressure, ethyl acetate of extraction solvent, 1:20 (g/mL) of solid/liquid ratio, and 2 min of extraction time were obtained. For the separation, from 1.5 g of the terpenoid extract, 220.1 mg of 4 , 255.5 mg of 5 , and 212.3 mg of the mixture of 1 , 2 , and 3 were obtained by pH‐zone‐refining countercurrent chromatography under the solvent system of chloroform/ethyl acetate/methanol/water (3:1:3:2, v/v/v/v) with aqueous ammonia and trifluoroacetic acid as retention and eluter agents. The enriched mixture (210 mg) was further separated by conventional high‐speed countercurrent chromatography with petroleum ether/ethyl acetate/methanol/water (1:0.8:1.1:0.6, v/v/v/v), yielding 30.1 mg of 1 , 35.5 mg of 2 , 12.3 mg of 3 . The structures of these five terpenoids were elucidated by extensive spectroscopic methods.  相似文献   

17.
The separation of ten epimeric aromatic acid (−)‐menthol esters by countercurrent chromatography with hydroxypropyl‐β‐cyclodextrin as the mobile phase additive was investigated, and methods for the analysis of all the epimeric esters by reversed‐phase high‐performance liquid chromatography were established. A biphasic solvent system composed of n‐hexane/20–70% methanol containing 50 mmol/L of hydroxypropyl‐β‐cyclodextrin (1:1, v/v) was selected, which provided high separation factors for five of the epimeric esters, and successful separations by countercurrent chromatography were achieved. The complete separation of five pairs of epimeric ester was obtained with the purity being over 98% for each peak fractions, as determined by high‐performance liquid chromatography. The recovery of each analyte from the eluted fractions reached around 80–88%.  相似文献   

18.
Anthocyanins have attracted attention over the past several decades because of their beneficial health effects. In this research, a strategy combining column chromatography and high‐speed countercurrent chromatography was developed for the separation of high‐purity anthocyanin monomers from mulberry fruits. After purification using Amberlite XAD‐7HP column with 80% ethanol (0.1% HCl), a fraction of anthocyanins mixtures with a purity of 68.6% was obtained. High‐speed countercurrent chromatography with a biphasic solvent system of n‐butanol/methyl tert‐butyl ether/acetonitrile/water/trifluoroacetic acid (30:10:10:50:0.05, v/v) was used to separate the anthocyanin monomers. Three monomers of delphinidin‐3‐O‐ rutinoside, cyanidin‐3‐O‐ rutinoside, and cyanidin‐3‐O‐ glucoside were obtained, and identified by 1H and 13C NMR spectroscopy and high‐performance liquid chromatography with electrospray ionization‐mass spectrometry. The method developed in this work can be used to conduct large‐scale separations of anthocyanin monomers from mulberry fruits and other plants.  相似文献   

19.
A mass spectrometry–guided elution–extrusion countercurrent chromatography protocol was developed to separate chemical components from Cornus officinalis Sieb. et Zucc. In this study, ion current extraction, a mass spectrometry–based data postacquisition method, was utilized to boost the separation power and scope of countercurrent chromatography technique. As a peak repicking and denoising tool, ion current extraction was carried out to process the liquid chromatography with mass spectrometry and the countercurrent chromatography with mass spectrometry data. So the target components were reacquired in the created extracted ion current patterns with enhanced responses and diminished background noise, which facilitated the distribution constant determination (by liquid chromatography with extracted ion current) and the targets fractionation (by countercurrent chromatography with extracted ion current). Under the guidance of the extracted ion currents of the target components and with the support of elution–extrusion mode in the countercurrent chromatography separation, six pairs of minor iridoid isomers were obtained in shortened experimental duration. Besides, a reciprocal shifted symmetry plot was established to represent the elution–extrusion countercurrent chromatography chromatogram. The results demonstrated the capability of the ion current extraction–guided elution–extrusion countercurrent chromatography protocol in discovery, analysis, and fractionation of low‐concentration and structurally similar chemicals from a complicated sample.  相似文献   

20.
This work deals with the enantioseparation of α‐amino acids by chiral ligand exchange high‐speed countercurrent chromatography using Nn‐dodecyl‐l ‐hydroxyproline as a chiral ligand and copper(II) as a transition metal ion. A biphasic solvent system composed of n‐hexane/n‐butanol/aqueous phase with different volume ratios was selected for each α‐amino acid. The enantioseparation conditions were optimized by enantioselective liquid–liquid extractions, in which the main influence factors, including type of chiral ligand, concentration of chiral ligand and transition metal ion, separation temperature, and pH of the aqueous phase, were investigated for racemic phenylalanine. Altogether, we tried to enantioseparate 15 racemic α‐amino acids by the analytical countercurrent chromatography, of which only five of them could be successfully enantioseparated. Different elution sequence for phenylalanine enantiomer was observed compared with traditional liquid chromatography and the proposed interactions between chiral ligand, transition metal ion (Cu2+), and enantiomer are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号