首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using melt processing. The effects of maleic anhydride grafted PLA (PLA-g-MA) and calcium carbonate (CaCO3) content on mechanical, thermal, and morphological properties of the blends were investigated. PLA-g-MA was synthesized by varying monomer and initiator contents using a reactive melt-grafting process. Tensile properties of PLA/PBAT blend were enhanced with adding 2 phr of PLA-g-MA. SEM micrographs exhibited the improvement of interfacial adhesion between PLA and PBAT in the compatibilized blend. Moreover, thermal stability of the blends improved with presence of PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased.  相似文献   

2.
Polylactide (PLA) films blended with 10 wt% poly(butylene adipate-co-terephthalate) (PBAT) were prepared by using a twin screw extruder in the presence of the nucleating agent of titanium dioxide (TiO2) and the compatibilizers of toluene diisocyanate (TDI) and PLA-grafted-maleic anhydride (PLA-g-MA). The synergistic effect of the nucleation and compatibilization on the properties and crystallization behavior of the PLA/PBAT (PLB) films was explored. The results showed that the addition of TiO2 significantly enhanced the tensile strength and the impact tensile resistance of the PLB films while slightly decreased its thermal stability. In addition, the compatibilizers of TDI and PLA-g-MA in the system not only affected the crystallinity and cold crystallization process of the PLB films, but also increased the mechanical properties of them due to the improvement of the interfacial interaction between PLA and PBAT revealed by the morphological measurement. The synergistic effects of the nucleating agent and the compatibilizer afforded the blend films with increased tensile strength and impact tensile toughness, improved cold crystallization property and χ c.  相似文献   

3.
In this study, high oxygen barrier nanocomposite films were prepared by melt blending of low-density polyethylene/ethylene vinyl alcohol/nanoclay/polyethylene-grafted-maleic anhydride (LDPE/EVOH/nanoclay/LDPE-g-MA). Effect of each component presence was determined by using Box-Behnken experiment design methodology. For all the responses obtained, R 2 was between 0.956 and 0.981 indicating a very good fitting of the experimental data with the response surface method (RSM) in the models. Oxygen transfer rate (OTR) results shown that the addition of EVOH, compatibilizer, and nanoclay in formulations significantly decreases oxygen permeability. The experimental results showed that addition of 30 wt % EVOH, 4 wt % nanoclay, and 5 wt % LDPE-g-MA to the LDPE matrix gave the best oxygen barrier properties. The crystallization behaviors of the samples and thermal analysis have been characterized by using differential scanning calorimetry (DSC). The addition of nanoclay to the blends has resulted in increased crystallinity of LDPE phase. The state of nanoclay dispersion in the samples was examined by the X-ray diffraction (XRD) tests. The reduction of EVOH and nanoclay content, as well as the increase of LDPE-g-MA, has resulted in the better dispersion of nanoclay in the polymer matrix. The morphology of specimens was observed by using energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM).  相似文献   

4.
Imidazolium-based elastomeric ionomers (i-BIIR) were facilely synthesized by ionically modified brominated poly(isobutylene-co-isoprene) (BIIR) with different alkyl chain imidazole and thoroughly explored as novel toughening agents for poly(lactic acid) (PLA). The miscibility, thermal behavior, phase morphology and mechanical property of ionomers and blends were investigated through dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile and impact testing. DMA and SEM results showed that better compatibility between the PLA and i-BIIR was achieved compared to the PLA/unmodified BIIR elastomer. A remarkable improvement in ductility with an optimum elongation at break up to 235% was achieved for the PLA/i-BIIR blends with 1-dodecylimidazole alkyl chain (i-BIIR-12), more than 10 times higher than that of pure PLA. The impact strengths of PLA were enhanced from 1.9 kJ/m2 to 4.1 kJ/m2 for the PLA/10 wt% i-BIIR-12 blend. Toughening mechanism had been established by systematical analysis of the compatibility, intermolecular interaction and phase structures of the blends. Interfacial cavitations initiated massive shear yielding of the PLA matrix owing to a suitable interfacial adhesion which played a key role in the enormous toughening effect in these blends. We believed that introducing imidazolium group into the BIIR elastomer was vital for the formation of a suitable interfacial adhesion.  相似文献   

5.
In this study,the maleic anhydride(MAH)and styrene(St)dual monomers grafted polypropylene(PP)and poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS),i.e.PP-g-(MAH-co-St)and SEBS-g-(MAH-co-St)are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS(70/10/10/10)model quaternary blends.Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St)in the dispersed domains(about 2μm)of the PA6/PS/PP-g-(MAH-co-St)/SEBS(70/10/10/10)quaternary blend.In contrast,inside the dispersed domains(about 1μm)of the PA6/PS/PP/SEBS-g-(MAH-co-St)(70/10/10/10)quaternary blend,the soft SEBS-g-(MAH-co-St)encapsulates both the hard PS and PP phases and separates them.With increasing the content of the compatibilizers equally,the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St))(70/10/10/10)quaternary blends evolves from the soft(SEBS+SEBS-g-(MAH-co-St))encapsulating PS and partially encapsulating PP(about 1μm),then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St)and then separated by PP-g-(MAH-co-St)inside the smaller domains(about 0.6μm).This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers.The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain,which results in the further improved mechanical properties.Compared to the uncompatibilized blend,the blend with both 10 wt%PP-g-(MAH-co-St)and 10 wt%SEBS-g-(MAH-co-St)has the best mechanical properties with the stress at break,strain at break and impact failure energy improved significantly by 97%,71%and 261%,respectively.There is a strong correlation between the structure and property in the blends.  相似文献   

6.
In this study, maleic-anhydride-grafted polylactide (PLA-g-MA) was investigated as a potential compatibilizing agent for the polylactide (PLA)/poly(ε-caprolactone) (PCL) system, with the aim of enhancing the final properties of the two polymer blends. Indeed, PLA-g-MA was prepared via reactive blending through a free radical process and characterized by means of 1H-NMR and titration measurements, which demonstrated that the employed procedure allows grafting 0.7 wt% of MA onto the polymer backbone, while avoiding a dramatic reduction of PLA molecular mass. The specific effect of the MA-grafted PLA on the features of the PLA/PCL system was highlighted by adding different amounts of PLA-g-MA to 70:30 (w/w) PLA/PCL blends, where the 70 % PLA component was progressively substituted by its maleated modification. The efficiency of PLA-g-MA as a compatibilizer for the PLA/PCL blends was assessed through SEM analysis, which showed that the dimensions of PCL domains decrease and their adhesion to PLA improves by increasing the amount of PLA-g-MA in the blends. The peculiar microstructure promoted by the presence of PLA-g-MA was found to enhance the mechanical properties of the blend, improving the elongation at break without decreasing its Young’s modulus. Our study demonstrated that not only the microstructure but also the thermal properties of the blends were significantly affected by the replacement of PLA with PLA-g-MA.  相似文献   

7.
Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L?1 day?1 and the space-time productivity of 143.2 mmol L?1 h?1 g?1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.  相似文献   

8.
Thermo-responsive butyl acrylate/furfuryl methacrylate copolymer-based (PBF backbone) graft (co)polymers with dynamic covalent linkages between their backbones and side chains via the Diels-Alder reaction of furan/maleimide were synthesized. Atom transfer radical polymerization (ATRP) was used to synthesize graft copolymers with thermo-responsive transformation from graft copolymers to linear polymers with bimodal or wide MWD. The NMR measurements indicated that the Diels-Alder reaction and retro-Diels-Alder reaction occurred, depending on the change of the temperature, meaning that the side chains could be cleaved and reformed according to the variation of the temperature. GPC measurements demonstrated that the molecular weights of the polymers were thermoresponsive. Furthermore, three graft copolymers with various branching chains (PBF-g-PBA, PBF-g-P(BMA-co-MA) and PBF-g-PBMA) were compared to study the influence of compatibility between the backbone and the branching chain on the efficiency of Diels-Alder reaction after the cleavage of the DA linkage. The results showed that the ability of the side chains to come back to the main chain was strongly affected by the compatibility between the backbone and the side chains and the flexibility of the polymer chains.  相似文献   

9.
顾林  余海斌 《高分子科学》2016,34(7):901-909
In this work, a series of high performance bio-based polyurethanes(bio-PUs) were synthesized from polylactide(PLA)-based diols, different diisocyanates(TDI, MDI, HDI, IPDI) and chain extender 1,4-butanediol, in which different soft and hard segments are used to adjust their transition temperatures and mechanical properties. Poly(lactide-co-caprolactone)copolymer diols(co-PLAols) instead of PLA diols as the soft segment improved the thermal stability and mechanical properties of the synthesized bio-PUs. Among them, MDI-based bio-PUs have the highest T_g(43.8 °C), tensile strength(23.5 MPa) and modulus(380.8 MPa), while HDI-based bio-PUs have the lowest T_g(21.4 °C) and highest elongation at break(580%). Especially, the bio-PUs synthesized from co-PLAols and MDI demonstrate better mechanical properties,closed to petroleum-based commodities. Furthermore, the obtained bio-PUs display good shape memory properties at body temperature and cytocompatibility. Therefore, these bio-PUs are promising for applications in biomedical fields.  相似文献   

10.
The polypropylene-graft-polyisoprene (PP-g-PIP) copolymers with different side chain length were synthesized by the combination of solid phase graft and anionic polymerization. The copolymers were characterized by nuclear magnetic resonance spectrum (1H-NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Five PP/PP-g-PIP blends with PP-g-PIP as a flexibilizer to toughen PP were prepared and characterized by scanning electron microscope (SEM), dynamic mechanical analysis (DMA), DSC, wide-angle X-ray diffraction (WAXD). Their morphologies, glass transition temperatures, crystallinity and mechanical properties were investigated. All the results pointed out that the covalent bonding of PP and PIP increased the compatibility and interfacial adhesion, which led to PIP well dispersed in the system and small size PIP particles in the binary blends. In addition, the toughness of PP was improved while its tensile strength slightly decreased.  相似文献   

11.
Crystallization behavior and morphology of PLA blended with 0.05–1.00 wt % loadings of poly(D-lactic acid) (PDLA) forming stereocomplex crystallites as in-situ nucleating agents, were studied using wideangle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarizing-light optical microscopy (POM). Blending PLA with small amount of PDLA does lead to formation of PLA stereocomplex (SC), although the PLA is a random copolymer. The in-situ formed SC crystal acted as nucleation sites in blends and accelerated the crystallization of PLA by decreasing the half-time (t1/2). The nucleation efficiency of PDLA obviously increased and the crystallization induction time decreased while the content of PDLA reached up to 0.20 wt %. While the content of PDLA is 0.2 wt %, the nucleation efficiency of PDLA is up to 43.8%, and the induction time decreased from 430 to 88 s. In addition, compared with pure PLA, t1/2 decreases from 15.1 to 3.5 min at Tc = 127.5°C while the amount PDLA is 1.0 wt %. The equilibrium melting temperature of PLA decreased from 187.2 to 181.2°C with the increase of PDLA content.  相似文献   

12.
The linear poly(L-lactide) and poly(D-lactide) (PLLA, PDLA) with relative lower molecular weights were synthesized, and PLLA/PDLA blends at various content of PDLA were prepared by solution casting. The morphology and growth of poly(lactide) stereocomplex (PLA SC) were investigated by polarized optical microscope. Results revealed that the morphology of SC in the blends strongly depended on the content of PDLA and the annealing temperature. Dendritic and irregular SC with looser structure developed in the specimens with lower content of PDLA, and regular SC spherulites with birefringent and compact structure produced in the specimens with higher content of PDLA. The growth rate (G) of SC increased gradually as the content of PDLA enhanced in the blends. As the annealing temperature enhanced, the SC with brighter and more compact structure appeared. The G value increased at first before declining as the annealing temperature elevated from the 130 to 190°C. And the nonlinear behavior of the growth of SC in the dissimilar specimens was analyzed.  相似文献   

13.
The saturated vapors of ErCl3 and YbCl3 were studied in a simultaneous electron diffraction and mass spectrometric experiment at 1165 K and 1170 K, respectively. In the vapors of these compounds, we found up to 3 mol.% dimers along with the monomers. The parameters of the r g effective configuration of the monomer molecules were determined. For ErCl3 and YbCl3, the internuclear distances r g(Ln-Cl) were 2.436(5) Å and 2.416(5) Å, and the bond angles ∠g(Cl-Ln-Cl) were 117.0(10)° and 117.2(10)°, respectively. The equilibrium configurations and vibration frequencies of the monomer and dimer molecules were calculated by the HF, B3LYP, and MP2 methods using the combination of the ECPD energy-consistent quasirelativistic core potential, including 4f electrons [Kr4d 104f n ], and the contracted [5s4p3d] valence basis set for Er and Yb atoms and the MIDIX [4s3p1d] basis set for Cl atoms. The parameters of the effective r g configuration of the monomer molecules corresponding to the temperature of the experiment were calculated. The difference between the calculated equilibrium r e(Ln-Cl) and temperature-averaged r g(Ln-Cl) distances was found to be 0.001–0.002 Å and did not exceed the error of the r g(Ln-Cl) parameter determined in the electron diffraction experiment. The experimental parameters of the r g structure were shown to be consistent with the idea about the planar equilibrium geometrical configuration of ErCl3 and YbCl3 molecules.  相似文献   

14.
A significant enhancement in isothermal crystallization kinetics of biodegradable polylactide (PLA) in its immiscible blends can be accomplished through blending it with a comb-like copolymer. PLA was blended with poly(ethylene glycol) methyl ether acrylate (PEGA) and poly[poly(ethylene glycol) methyl ether acrylate] (PPEGA, a comb-like copolymer), respectively. The results measured from phase contrast optical microscopy (PCOM) and differential scanning calorimetry (DSC) indicate that PLA and PEGA components are miscible, whereas PLA and PPEGA components are immiscible. The study of crystallization kinetics for PLA/PEGA and PLA/PPEGA blends by means of polarized optical microscopy (POM) and DSC indicates that both PEGA and PPEGA significantly increase the PLA spherulitic growth rates, G, although PLA/PPEGA blends are immiscible and the glass transition temperatures of PLA only have slight decreases. PPEGA component enhances nucleation for PLA crystallization as compared with PEGA component owing to the heterogeneous nucleation effect of PPEGA at the low composition of 20 wt%, while PLA crystallization-induced phase separation for PLA/PEGA blend might cause further nucleation at the high composition of 50 wt%. DSC measurement further demonstrates that isothermal crystallization kinetics can be relatively more enhanced for PLA/PPEGA blends than for PLA/PEGA blends. The “abnormal” enhancement in G for PLA in its immiscible blends can be explained by local interfacial interactions through the densely grafted PEGA side chains in the comb-like PPEGA, even though the whole blend system (PLA/PPEGA blends) represents an immiscible one.  相似文献   

15.
A couple of novel electrochromic materials poly(2,3,4,5-tetrakis(2,3-hydrothieno[3,4-b]dixin-5-yl)-1-methyl-1H-pyrrole) (P(t-EDOT-mPy)) and poly(5,5′,5′′,5′′′-(thiophene-2,3,4,5-tetrayl)tetrakis(2,3-dihydrothieno[3,4-b][1,4]dioxine)) (P(t-EDOT-Th)) are electrodeposited via multi-position polymerization of their tetra-EDOT substituted monomers t-EDOT-mPy and t-EDOT-Th, respectively. Compared with the linear 2D structured poly(thiophene) (E g=2.2 eV) and poly(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophene) (E g=1.7 eV), P(t-EDOT-Th) (E g=1.62 eV) has the lowest band gap. Hence, we speculate that the band gaps of the two polymers, having 3D structures, are decreased in contrast to non-substituted polymers or bi-EDOT substituted polymers, thiophene and 1-methyl-1H-pyrrole. The results indicated that P(t-EDOT-Th) thin films are more stable and show higher transmittance amid two polymers, which may find their utilization in organic optoelectronics.  相似文献   

16.
Stereoselective interaction was observed in the mixture of enantiopure gradient polycarbonate (denoted as PCOPC-g-PCPC, originated from the enantioselective terpolymerization of CO2, 3,4-epoxytetrahydrofuran (COPO) and cyclopentene oxide (CPO)) and various isotactic polycarbonates with opposite configuration in chloroform solution. The resultant crystalline stereocomplexes exhibit enhanced thermal stability and new crystalline behaviors, significantly distinct from their parent polymers. It was found that the cocrystallization selectively occurred between (R)-PCOPC (CO2/COPO copolymer) and (S)-PCOPC-enriched segment in the gradient terpolymer (S)-PCOPC-g-PCPC, while (R)-PCPC (CO2/CPO copolymer) selectively complexed with (S)-PCPC-enriched segment. No stereocomplexation was observed between (S)-PCOPC-g-PCPC and (S)-PCOPC or (S)-PCPC. This study is beneficial to finding new routes to prepare various semicrystalline materials having a wide variety of physical properties and degradability.  相似文献   

17.
The binary molybdate Li2Zn2(MoO4)3 of a new crystal type was characterized by EPR, optical spectroscopy, and X-ray diffraction methods. The crystals have the Pnma symmetry group and the lattice parameters a = 5.1139(5) Å, b = 10.4926(13) Å, c = 17.6445(22) Å; Z = 4. The crystals possess scintillation properties; emission is caused by the presence of impurity levels in the forbidden band. The EPR studies of the nature of the impurity centers responsible for the scintillation characteristics of the crystal showed that the centers were Cu2+ ions substituted for zinc ions in the oxygen octahedra. The directions of the main values of the g and tensors (g zz , A zz ) correspond to the direction of O-Cu-O of the oxygen octahedron distorted along the Z axis. The EPR spectra of the copper ions are described by the spin Hamiltonian with the parameters g = 2.38, g = 2.06; A = 116 G, A = 0 G.  相似文献   

18.
9-Diazofluoren adds in Et2O at 20°C to methyltetrolate in keeping with Auwers rule and nonregioselectively adds to methyl-3-phenylpropiolate with the formation of spirocyclic 3H-pyrazoles. The methyltetrolate adduct at boiling in toluene converts into methyl 3a-methyl-3aH-dibenzo[e,g]indazole-3-carboxylate, at 190°C in benzene, into methyl 3-methyl-2H-dibenzo[e,g]indazole-2-carboxylate, and at 160°C in methanol, into 3-methyl-2H-dibenzo[e,g]indazole. Auwers adduct of methyl 3-phenylpropiolate at boiling in benzene gives cyclopropene derivative and at boiling in methanol isomerizes into methyl 3a-phenyl-3aHdibenzo[e,g]indazole-3-carboxylate. Anti-Auwers adduct at boiling in benzene isomerizes into methyl 2-phenylpyrazolo[1,5-f]phenanthridine-3-carboxylate.  相似文献   

19.
pH-responsive micelles with a biodegradable PLA core and a mixed PEG/PDPA shell were prepared by self-assembly of poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) and poly(2-(diisopropylamino)ethyl methacrylate)-b-poly(lactic acid) (PDPA-b-PLA). The micellization status with different pH and the enzyme degradation behavior were characterized by 1H-NMR spectroscopy, dynamic light scattering measurement and zeta potential test. The pH turning point of PDPA block was determined to be in the range of 5.5?7.0. While the pH was above 7.0, the PDPA block collapsed onto the PLA core and could protect the PLA core from invasion of enzyme, as a result, the micelle exhibited a resistance to the enzymatic degradation.  相似文献   

20.
Glassy Se100?x(Ge2Sb2Te5)x (x?=?5, 10, 15 and 20) bulk alloys were prepared by melt-quenched technique and studied by using differential scanning calorimetry at different heating rates under non-isothermal condition. The detailed thermal analysis shows that the glass transition temperature (Tg) depends on heating rates and x content. In particular, it is found that the glass-forming ability, thermal stability (Tc???Tg) and crystallization activation energy (Ec) increase with increased x content in amorphous Se, whereas glass transition activation energy (Eg) and fragility index (F) decrease with increased x contents. Variation in these parameters can be explained on the basis of network-forming ability of Se and bonding arrangement among the constituent atoms of alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号