首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用瞬态光电导谱研究了TiO2的光电导衰减曲线,通过计算机拟合得到光生载流子的寿命,并考察了Pt的负载量对TiO2光生载流子有效寿命的影响.结果表明,增大Pt的负载量,可延缓光电导的衰减趋势,从而延长TiO2光生载流子的有效寿命,有效地降低了光生载流子的复合率.  相似文献   

2.
Two-dimensional conductive metal–organic frameworks (2D c-MOFs) are a family of highly tunable and electrically conducting materials that can be utilized in optoelectronics. A major issue of 2D c-MOFs for photodetection is their poor charge separation and recombination dynamics upon illumination. This study demonstrates a Cu3(HHTP)2/ZnO type-II heterojunction ultraviolet (UV) photodetector fabricated by layer-by-layer (LbL) deposition, in which the charge separation of photogenerated carriers is enhanced. At optimized MOF layer cycles, the device achieves a responsivity of 78.2 A/W and detectivity of 3.8×109 Jones at 1 V. Particularly, the device can be operated in the self-powered mode with an ultrafast response time of 70 μs, which is the record value for MOF-based photodetectors. In addition, even after 1000-time bending of 180°, the flexible device maintains stable performance. This flexible MOF-based UV photodetector with anti-fatigue and anti-bending properties provides strong implication to wearable optoelectronics.  相似文献   

3.
Intermolecular charge transfer (ICT) effect has been widely studied in both small molecules and linear polymers. Covalently-bonded donor-acceptor pairs with tunable bandgaps and photoelectric properties endow these materials with potential applications in optoelectronics, fluorescent bioimaging, and sensors, etc. However, owing to the lack of charge transfer pathway or effective separation of charge carriers, unfavorable charge recombination gives rise to inevitable energy loss. Covalent organic frameworks (COFs) can be mediated with various geometry- and property-tailored building blocks, where donor (D) and acceptor (A) segments are connected by covalent bonds and can be finely arranged to form highly ordered networks (namely D−A COFs). The unique structural features of D−A COFs render the formation of segregated D−A stacks, thus provides pathways and channels for effective charge carriers transport. This review highlights the significant progress on D−A COFs over the past decade with emphasis on design principles, growing structural diversities, and promising application potentials.  相似文献   

4.
Electrospinning is widely accepted as a simple and versatile technique for producing nanofibers. The present work, however, introduces a new concept of the electrospinning method for controlling the crystal morphology and molecular orientation of the nanofibers through an illustration of a case study of polyoxymethylene (POM) nanofibers. Isotropic and anisotropic electrospun POM nanofibers are successfully prepared by using a stationary collector and a rotating disk collector. By controlling the voltage and the take-up velocity of the disk rotator, the morphology changes between an extended chain crystal (ECC) and a folded chain crystal (FCC) as clarified by a detailed analysis of the X-ray diffraction and polarized infrared spectra of the POM nanofibers. Herman's orientation function and dichroic ratio lead us to a schematic conclusion--that (i) molecular orientation is parallel to the fiber axis in both isotropic and anisotropic POM nanofibers, (ii) a single nanofiber consists of a nanofibril assembly with a size of 60-70 A and tilting at a certain degree, and (iii) the higher the take-up velocity, the smaller the nanofibril under the (9/5) helical structure of the POM chains. It should be emphasized here that the electrospinning method is no longer a single nanofiber producer but that it can be applied as a new instrument to control the morphology and chain orientation characteristics of polymer materials, opening a new research field in polymer science where we can understand the relationship between structure at the molecular level and the properties and performance at the macroscopic level.  相似文献   

5.
Constructing a Z-scheme is a significant approach to improve the separation of photogene rated carriers for effective organic pollutant degradation.Herein,a BiVO4/ZnIn2S4(BZ) Z-scheme composite was successfully synthesized,and applied to photodegrade methyl orange(MO) irradiated by a LED lamp.Anchoring the BiVO4 on the ZnIn2S4 nanoparticles promoted the separation of photogenerated electronholes and broadened the light response range.The detailed characterizations,including surface morphology,elements valence state,and photocurrent performance,demonstrated that the enhanced separation of photogenerated carriers was the pivotal reason for the enhanced photocatalysis reaction.Benefiting from the excellent photocatalytic characteristics,the 5% mass ratio of BZ composite presented the highest MO degradation rate of 0.00997 min^-1,which was 1.9 and 10.3 times greater than the virgin ZnIn2S4 and BiVO4,respectively.Furthermore,the BZ hybrid materials indicated a well photo-stability in the four recycling tests.  相似文献   

6.
Halide perovskites are materials for future optical displays and solar cells. Electron donor-acceptor perovskite heterostructures with distinguishing halide compositions are promising for transporting and harvesting photogenerated charge carriers. Combined e-beam lithography and anion exchange are promising to develop such heterostructures but challenging to prepare multiple heterojunctions at desired locations in single crystals. We demonstrate swift laser trapping-assisted band gap engineering at the desired locations in MAPbBr3 microrods, microplates, or nanocrystal thin films. The built-in donor-acceptor double and multi-heterojunction structures let us transport and trap photogenerated charge carriers from wide-band gap bromide to narrow-band gap iodide domains. We discuss the charge carrier transport and trapping mechanisms from the viewpoints of engineered bands and band continuity. This work offers a convenient method for designing single-, double- and multi-heterojunction donor-acceptor halide perovskites for photovoltaic, photonic, and electronic applications.  相似文献   

7.
薄膜荧光化学传感提供了一种固相、便携、易操作的气相分子检测技术,在环境、安全、生物医学、健康监测等领域具有重要的应用价值和发展前景.基于本课题组在超分子自组装构建n-型有机半导体苝二酰亚胺衍生物(PTCDI)一维纳米纤维及其荧光薄膜检测胺类等气相分子领域研究,结合其他课题组工作,本文阐述了该类纳米纤维多孔薄膜在结构调控,荧光传感应用性能、机制和意义方面的研究进展.同时,也介绍了本课题组在p型有机半导体咔唑角亚乙炔四环(ACTC)和咔唑三聚体等在本领域的进展,最后对未来挑战和发展方向进行了展望.  相似文献   

8.
A visible‐light‐responsive bismuth‐based metal–organic framework (Bi‐mna) is demonstrated to show good photoelectric and photocatalytic properties. Combining experimental and theoretical results, a ligand‐to‐ligand charge transfer (LLCT) process is found to be responsible for the high performance, which gives rise to a longer lifetime of photogenerated charge carriers. Our results suggest that bismuth‐based MOFs could be promising candidates for the development of efficient visible‐light photocatalysts.  相似文献   

9.
Layered hybrid organic perovskites (HOPs) structures are a class of low‐cost two‐dimensional materials that exhibit outstanding optical properties, related to dielectric and quantum confinement effects. Whereas modeling and understanding of quantum confinement are well developed for conventional semiconductors, such knowledge is still lacking for 2D HOPs. In this work, concepts of effective mass and quantum well are carefully investigated and their applicability to 2D HOPs is discussed. For ultrathin layers, the effective‐mass model fails. Absence of superlattice coupling and importance of non‐parabolicity effects prevents the use of simple empirical models based on effective masses and envelope function approximations. An alternative method is suggested in which 2D HOPs are treated as composite materials, and a first‐principles approach to the calculation of band offsets is introduced. These findings might also be relevant for other classes of layered 2D functional materials.  相似文献   

10.
11.
Highly-efficient photocatalytic conversion of CO2 into valuable carbon-contained chemicals possesses a tremendous potential in solving the energy crisis and global warming problem. However, the inadequate separation of photogenerated electron-hole pairs and the unsatisfied capture of CO2 stay the chief roadblocks. Herein, we designed a novel photocatalyst for CO2 reduction by assembling three-dimensional graphene (3D GR) with a typical metal-organic framework material UIO-66-NH2, aiming to construct a built-in electric field for charge separation as well as taking advantage of the typical 3D structure of GR for maximizing the exposed absorption site on the surface. The performance evaluation demonstrated that the photocatalytic activity has been improved for the composite materials compared with that of the pure UIO-66-NH2. Further mechanism investigations proved that the enhanced photocatalytic performance is attributed to the synergy of enhanced CO2 absorption and inhibited photogenerated charge recombination, which could be owing to the better distribution and exposure of absorption and reaction sites on composites, and the redistribution of photogenerated carriers between 3D GR and UIO-66-NH2. This study provides a promising pathway to probe nanocomposites based on MOFs in environmental improvement and other relevant fields.  相似文献   

12.
The surface electronic properties of CdSe nanocrystallites have been probed using low temperature and Zeeman spectroscopies. Fluorescence line narrowed spectra show dramatic changes between 1.75 and 10 K and also as a function of applied magnetic field. These effects are attributed to the localization of the photogenerated charge carriers on the surface. A simple model has been constructed to calculate the charge distribution within the nanocrystallite.  相似文献   

13.
The general properties of the hopping transport of charge carriers in amorphous organic and inorganic materials are discussed. The case where the random energy landscape in the material is strongly spatially correlated is considered. This situation is typical of organic materials with the Gaussian density of states (DOS) and may also be realized in some materials with the exponential DOS. It is demonstrated that the different DOS types can lead to very different functional forms of the mobility field dependence even for the identical correlation function of random energy. Important arguments are provided in favor of the significant contribution of the local orientational order to the total magnitude of energetic disorder in organic materials. A simple but promising model of charge transport in highly anisotropic composites materials is proposed.  相似文献   

14.
Various ordered structures of crystalline three-dimensional (3D) cubic, 2D columnar or 1D lamellar mesophases have been facilely achieved through host–guest interactions of electrically neutral host tris(18-crown-6)triphenylene and guest potassium sulfonates with alkyl tails of variant number and length. The convenient construction of functionalised ionic complexes and the flexibility of such a supramolecular approach offer a wide variety of possibilities to prepare various ordered functional soft materials, especially those in their 2D ordered columnar liquid crystalline mesophases may serve as promising electron and ion dual-channel transport organic electronic materials.  相似文献   

15.
Simple organic salts based on aniline‐derived cations and D ‐tartrate anions formed organogels and helical nanofibers. The organic salt (p‐fluoroanilinium)(D ‐tartrate) was found to generate an organogel despite the absence of a hydrophobic alkyl chain, whereas (p‐iodoanilinium)(D ‐tartrate) formed helical nanofibers in braided ropelike structures through a rolling‐up process. The helicity of these nanofibers could be reversed by changing the growth solvent. The driving forces responsible for the formation of the nanofibers were determined to be 1D O?H???O? hydrogen‐bonding interactions between D ‐tartrate anions and π stacking of anilinium cations, as well as steric hindrance between the hydrogen‐bonded chains.  相似文献   

16.
We directly observed charge separation and a space‐charge region in an organic single‐crystal p–n heterojunction nanowire, by means of scanning photocurrent microscopy. The axial p–n heterojunction nanowire had a well‐defined planar junction, consisted of P3HT (p‐type) and C60 (n‐type) single crystals and was fabricated by means of the recently developed inkjet‐assisted nanotransfer printing technique. The depletion region formed at the p–n junction was directly observed by exploring the spatial distribution of photogenerated carriers along the heterojunction nanowire under various applied bias voltages. Our study provides a facile approach toward the precise characterization of charge transport in organic heterojunction systems as well as the design of efficient nanoscale organic optoelectronic devices.  相似文献   

17.
Decorating a host semiconductor with quantum dots (QDs) is an important strategy for optimizing the separation efficiency and transfer of photogenerated charge carriers. In this work, we designed a heterojunction photoelectrocatalyst in which the (040) facet of BiVO4 was decorated with self-assembled Ag@AgCl QDs (“Ag@AgCl/040BiVO4”). In this photocatalyst, photogenerated charge carriers are efficiently separated using a Z-scheme approach. A facile oil-in-water self-assembly method was employed to generate the composite photocatalyst, which was then characterized via XRD, XPS, SEM, TEM, etc. The results of this characterization indicated that the Ag@AgCl QDs were approximately 5 nm in size and were well dispersed across the (040) crystal facet of BiVO4. PEC measurements indicated that the efficiency of electron–hole separation was enhanced when the BiVO4 was decorated with Ag@AgCl QDs on just one of its facets (040) rather than across all of its surface. An attempt was also made to elucidate the mechanism of interfacial charge transfer in the Ag@AgCl/040BiVO4 system. Decorating a specific crystal facet (040) of BiVO4 with Ag@AgCl QDs was found to facilitate the spatial separation of photogenerated charge carriers and to enhance the redox ability of the system.  相似文献   

18.
CO_2是最常见的化合物,作为潜在的碳一资源,可用于制备多种高附加值的化学品,如一氧化碳、甲烷、甲醇、甲酸等。传统的热催化转化CO_2方法能耗高,反应条件苛刻。因此,如何在温和条件下高效地将CO_2转化成高附加值的化学品,一直以来是催化领域的研究热点和难点之一。光催化技术反应条件温和、绿色环保。然而,纯光催化反应普遍存在太阳能利用效率有限,光生载流子分离效率低等问题。针对上述问题,在光催化的基础上引入电催化,可以提高载流子的分离效率,在较低的过电位下,实现多电子、质子向CO_2转移,从而提高催化反应效率。总之,光电催化技术可以结合光催化和电催化的优势,提高CO_2催化还原反应效率,为清洁、绿色利用CO_2提供了一种新方法。本文依据光电催化CO_2还原反应基本过程,从光吸收、载流子分离和界面反应等三个角度综述了光电催化反应的基本强化策略,并对未来可能的研究方向进行了展望。  相似文献   

19.
Colloidal branched nanocrystals have been attracting increasing attention due to evidence of an interesting relationship between their complex shape and charge carrier dynamics. Herein, continuous wave photoinduced absorption (CW PIA) measurements of CdSe/CdS octapod-shaped nanocrystals are reported. CW PIA spectra show strong bleaching due to the one-dimensional (1D) CdS pod states (480 nm) and the zero-dimensional (0D) CdSe core states (690 nm). The agreement with previously reported ultrafast pump-probe experiments indicates that this strong bleaching signal may be assigned to state filling. Additional bleaching features at 520 and 560 nm are characterized by a longer lifetime and are thus ascribed to defect states, localized at the pod-core interface of the octapod, showing that some of the initially photogenerated carriers get quickly trapped into these long-lived defect states. However, we remark that a relevant part of electrons remain untrapped: this opens up the opportunity to exploit octapod shaped nanocrystals in photovoltaics applications, as electron acceptor materials, considering that several efficient hole extracting materials are already available for the realization of a composite bulk heterojunction.  相似文献   

20.
张乾坤  梁海欧  白杰  李春萍 《化学通报》2023,86(10):1181-1187
CdS因其具有较窄的带隙宽度、合适的能带位置和宽范围的可见光吸收等特点被广泛应用于可见光催化领域,然而CdS材料应用于实际生产仍然十分困难,纯的CdS光生载流子复合快、活性位点少、光腐蚀严重等问题亟待解决。本文总结了近几年具有优异光催化性能的CdS基复合材料设计案例,阐述了催化剂改性的原理,主要以加速电荷转移、提升电荷分离效率、产生更多的光生载流子为改性策略,并结合实际研究着重分类讨论了设计不同种类的异质结(如p-n型异质结、肖特基结、Z型异质结)、构建同质结和缺陷工程等手段应用于CdS基光催化剂的改性。最后对未来CdS基光催化剂的研究方向和可能面临的挑战做出了展望,以期望CdS基光催化剂广泛应用于实际生产生活中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号