首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Bond dissociation enthalpy differences, Z-X DeltaBDE = BDE(4-YC(6)H(4)Z-X) - BDE(C(6)H(5)Z-X), for Z = CH(2) and O are largely independent of X and are determined mainly by the stabilization/destabilization effect of Y on the 4-YC(6)H(4)Z(*) radicals. The effects of Y are small (< or =2 kcal/mol for all Y) for Z = CH(2), but they are large for Z = O, where good correlations with sigma(p)(+)(Y) yield rho(+) = 6.5 kcal/mol. For Z = NH, two sets of electrochemically measured N-H DeltaBDEs correlate with sigma(p)(+)(Y), yielding rho(+) = 3.9 and 3.0 kcal/mol. However, in contrast to the situation with phenols, these data indicate that the strengthening effect on N-H BDEs of electron-withdrawing (EW) Y's is greater than the weakening effect of electron-donating (ED) Y's. Attempts to measure N-H DeltaBDEs in anilines using two nonelectrochemical techniques were unsuccessful; therefore, we turned to density functional theory. Calculations on 15 4-YC(6)H(4)NH(2) gave N-H DeltaBDEs correlating with sigma(p)(+) (rho(+) = 4.6 kcal/mol) and indicated that EW and ED Y's had comparable strengthening and weakening effects, respectively, on the N-H bonds. To validate theory by connecting it to experiment, the N-H DeltaBDEs of four 4,4'-disubstituted diphenylamines and five 3,7-disubstituted phenothiazines were both calculated and measured by the radical equilibration EPR technique. For all compounds, theory and experiment agreed to better than 1 kcal/mol. Dissection of N-H DeltaBDEs in 4-substituted anilines and O-H DeltaBDEs in 4-substituted phenols into interaction enthalpies between Y and NH(2)/OH (molecule stabilization/destabilization enthalpy, MSE) and NH*/O* (radical stabilization/destabilization enthalpy, RSE) reveals that for both groups of compounds, ED Y's destabilize the molecule and stabilize the radical, while the opposite holds true for EW Y's. However, in the phenols the effects of substituents on the radical are roughly 3 times as great as those in the molecule, whereas in the anilines the two effects are of comparable magnitudes. These differences arise from the stronger ED character of NH(2) vs OH and the weaker EW character of NH* vs O*. The relatively large contributions to N-H BDEs in anilines arising from interactions in the molecules suggested that N-X DeltaBDEs in 4-YC(6)H(4)NH-X would depend on X, in contrast to the lack of effect of X on O-X and CH(2)-X DeltaBDEs in 4-YC(6)H(4)O-X and 4-YC(6)H(4)CH(2)-X. This suggestion was confirmed for X = CH(3), H, OH, and F, for which the calculated NH-X DeltaBDEs yielded rho(+) = 5.0, 4.6, 4.0, and 3.0 kcal/mol, respectively.  相似文献   

2.
3.
UB3LYP/6-31G(d) and ROMP2/6-311++G(d,2p) methods were used to calculate the Si-X bond dissociation energies (BDEs) of a number of para-substituted aromatic silanes (4-Y-C(6)H(4)-SiH(2)X, where X = H, F, Cl, or Li). It was found that the substituent effect on the Si-H BDE of 4-Y-C(6)H(4)-SiH(3) was small, as the slope (rho(+)()) of the BDE- regression was only 0.09 kJ/mol. In comparison, the substituent effect on the Si-F BDE of 4-Y-C(6)H(4)-SiH(2)F was much stronger, whose rho(+ )()value was -2.34 kJ/mol. The substituent effect on the Si-Cl BDE of 4-Y-C(6)H(4)-SiH(2)Cl was also found to be strong with a rho(+)() value of -1.70 kJ/mol. However, the substituent effect on the Si-Li BDE of 4-Y-C(6)H(4)-SiH(2)Li was found to have a large and positive slope (+9.12 kJ/mol) against. The origin of the above remarkably different substituent effects on the Si-X BDEs was found to be associated with the ability of the substituent to stabilize or destabilize the starting material (4-Y-C(6)H(4)-SiH(2)X) as well as the product (4-Y-C(6)H(4)-SiH(2)* radical) of the homolysis. Therefore, the direction and magnitude of the effects of Y-substituents on the Z-X BDEs in compounds such as 4-YC(6)H(4)Z-X should have some important dependence on the polarity of the Z-X bond undergoing homolysis. This conclusion was in agreement with that from earlier studies (for example, J. Am. Chem. Soc. 1991, 113, 9363). However, it indicated that the proposal from a recent work (J. Am. Chem. Soc. 2001, 123, 5518) was unfortunately not justified.  相似文献   

4.
UB3LYP/6-311++g**//UB3LYP/6-31+g* and ROMP2/6-311++g**//UB3LYP/6-31+g* methods were used to calculate (i) N-X bond dissociation energies (BDE) in 4-YC6H4NH-X and (ii) N-H BDEs in 4-YC6H4NU-H, where Y = H, Me, OCH3, SMe, NH2, NMe2, SiMe3, F, Cl, CN, COOH, CF3, and NO2, X = H, CH3, F, Cl, and Li, and U = H, F, and CH(3). It was found that N-H BDEs of 4-YC6H4NH2 have a positive correlation with the substituent sigma(p+) constants. The slope (rho+) is about 3.0-4.3 kcal/mol, which is in good agreement with the experimental results. It was also found that the substituent effects on N-X BDEs of 4-YC6H4NH-X change considerably when X changes. rho(+)values for N-CH3, N-F, N-Cl, and N-Li BDEs were calculated to be 3.1-4.6, 1.3-1.9, 1.8-2.6, and 4.9-6.8 kcal/mol, respectively. The reason for the variation of substituent effects was proposed to be the ground-state effect, i.e., the interaction between the intact NH-X moiety and the parasubstituents. Finally, alpha-substitution was found to be able to significantly change the substituent effects. rho(+)values for N-H BDEs of 4-C6H4NCH3(-)H and 4-C6H4NF-H are 2.5-4.0 and 1.7-1.9 kcal/mol, respectively.  相似文献   

5.
The homolytic C-H bond dissociation enthalpies (BDEs) of toluene and its para- and meta-substituted derivatives have been estimated by using the (RO)B3LYP/6-311++G(2df,2p)//(U)B3LYP/6-311G(d,p) procedure. The performance of two other hybrid functionals of DFT, namely, B3PWP91 and O3LYP, has also been evaluated using the same basis sets and molecules. Our computed results are compared with the available experimental values and are found to be in good agreement. The (RO)B3LYP and (RO)O3LYP procedures are found to produce reliable BDEs for the C-H bonds in toluene and the C-X (X = F, Cl) bond in alpha-substituted toluene (C6H5-CH2X) and their substituted derivatives. The substituent effect on the BDE values has been analyzed in terms of the ground-state effect and the radical effect. The effect of polarization of the C-H bond on the substituent effect is also analyzed. The BDE(C-H) and BDE(C-X) values for alpha-substituted (X = F and Cl) toluenes with a set of para substituents are presented for the first time.  相似文献   

6.
For some time it has been assumed that the direction and magnitude of the effects of Y-substituents on the Z-X bond dissociation enthalpies (BDE's) in compounds of the general formula 4-YC(6)H(4)Z-X could be correlated with the polarity of the Z-X bond undergoing homolysis. Recently we have shown by DFT calculations on 4-YC(6)H(4)CH(2)-X (X = H, F, Cl, Br) that the effects of Y on CH(2)-X BDE's are small and roughly equal for each X, despite large changes in C-X bond polarity. We then proposed that when Y have significant effects on Z-X BDE's it is due to their stabilization or destabilization of the radical. This proposal has been examined by studying 4-YC(6)H(4)O-X BDE's for X = H, CH(3), and CH(2)C(6)H(5) both by theory and experiment. The magnitudes of the effects of Y on O-X BDE's were quantified by Hammett type plots of DeltaBDE's vs sigma(+) (Y). Calculations reveal that changes in O-X BDE's induced by changing Y are large and essentially identical (rho(+) = 6.7-6.9 kcal mol(-)(1)) for these three classes of compounds. The calculated rho(+) values are close to those obtained experimentally for X = H at ca. 300 K and for X = CH(2)C(6)H(5) at ca. 550 K. However, early literature reports of the effects of Y on O-X BDE's for X = CH(3) with measurements made at ca. 1000 K gave rho(+) approximately 3 kcal mol(-)(1). We have confirmed some of these earlier, high-temperature O-CH(3) BDE's and propose that at 1000 K, conjugating groups such as -OCH(3) are essentially free rotors, and no longer lie mainly in the plane of the aromatic ring. As a consequence, the 298 K DFT-calculated DeltaBDE for 4-OCH(3)-anisole of -6.1 kcal mol(-)(1) decreases to -3.8 kcal mol(-)(1) for free rotation, in agreement with the ca. 1000 K experimental value. In contrast, high-temperature O-CH(3) DeltaBDE's for three anisoles with strongly hindered substituent rotation are essentially identical to those that would be observed at ambient temperatures. We conclude that substituent effects measured at elevated temperatures may differ substantially from those appropriate for 298 K.  相似文献   

7.
The electrochemical behavior of a series of symmetrical and unsymmetrical aryl-substituted acetophenone azines (1-X/Y, where X and Y are 4-NO2, 4-CN, H, 3-OCH3, 4-OCH3, 4-CH3, and 4-N(CH3)2) was studied in acetonitrile and N,N-dimethylformamide (DMF) solution using cyclic voltammetry (CV). Compounds 1-X/Y, where neither X or Y are nitro substituents, undergo successive reduction to their radical anion (1-X/Y.-) and then dianion (1-X/Y2-), respectively. In all cases, the formation of the radical anion is completely reversible and the standard reduction potentials, Eo1-X/Y/1-X/Y.- could be determined. The reversibility of the second electron transfer is substituent dependent with certain dianions sufficiently basic to be protonated under our conditions. Standard reduction potentials (Eo1-X/Y/1-X/Y.-) for the formation of radical anions exhibit a large substituent effect with values differing by more than 0.66 V throughout the series going from 1-4-CN/4-CN to 1-4-OCH3/4-OCH3; similar substituent effects were determined for the formation of the dianion. The nitro-containing azines deviate from the above-mentioned behavior. With the exception of 1-4-NO2/4-NO2, they exhibit single electron waves that have values of Eo1-X/Y/1-X/Y.- within 40 mV of each other and thus the reduction is not subject to the same substituent effect as the other azines. 1-4-NO2/4-NO2 exhibits an Eo at a similar potential, but is a two-electron reversible wave with features indicative of a reduction system containing two localized, nonconjugated redox centers. The reduction potentials of all the aryl azines were correlated with Hammett sigma parameters to look at variations in Eo1-X/Y/1-X/Y.- vs SCE as a function of substituent. The small rho values in combination with the other electrochemical data provide support for single bond character of the N-N bond and evidence for a lack of strong electronic communication between the two aryl centers through the azomethine bonds, especially for those systems with electron-withdrawing groups.  相似文献   

8.
9.
The N-H bond dissociation enthalpies (BDE's) of 40 anilines (pGC(6)H(4)NHY) from series 1 to 4 with alpha-Y and p-G substituents and the stability of related radicals (pGC(6)H(4)Ndot;Y) were studied using ab initio (MP2) and density functional methods (B3LYP) with large basis sets. The results show that both methods reproduce earlier experimental BDEs within 2-3 kcal/mol and satisfactorily predict the alpha and remote substituent effects on BDEs (DeltaBDEs), as they reproduced the experimental DeltaBDEs within less than 1 kcal/mol. Furthermore, the conventional radical stabilization enthalpy (RSE = - DeltaBDE) was found to be invalid to represent the trend of the radical stabilization because the molecule effect (ME) can contribute more to RSE than the radical effect (RE) for certain series (1 and 4). These radicals are in fact stabilized by electron-withdrawing groups (EWGs) but destabilized by electron-donating groups (EDGs), a phenomenon just opposite to the observed O-behavior of many other aromatic heteroatomic radicals studied so far. These radicals are thus assigned as a new radical class, Class counter-O (or O) according to Walter's terminology. Moreover, the excellent multi-parametric Hammett-type correlations indicated that the para substituent effects on BDEs originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. The atomic charge and spin population variations at a radical center due to p-G substitution were also found to correlate satisfactorily with REs. These results show that the spin delocalization effect should be explicitly considered in accounting for both DeltaBDEs and radical stabilization effects. Finally, an overall subsituent effect scale for radical stability has been proposed, and the overall substituent effect on the N-radicals was found to conform to the Capto-dative Principle.  相似文献   

10.
Benzaldehyde derivatives possessing a C=N double bond in the side-chain of the aromatic ring exhibit a reverse dependence of the (13)C NMR chemical shifts of the C=N carbon on the benzylidenic substituents X. Thus, electron-withdrawing substituents cause shielding (shift is reduced), while electron-donating ones cause deshielding. The origin of this phenomenon, which is in contrast with the idea of the generalized electronic effect, is extensively studied here by comparing the behavior of sets of benzaldehyde derivatives bearing various substitutents Y on the C=N nitrogen (Y-N=CH-C(6)H(4)-X). The effects of substituents X on the C=N unit change when Y is varied. Combination of the influences of the substituents X and Y gives a sensitive balance between the different resonance structures of the compounds. Our graphical treatment, where the rho(I) and rho(R) values observed for substituent X are plotted against the sigma(p)(+) value of substituent Y, is a novel use of Hammett-type substituent parameters. The justification of this method and our conclusions could be verified, for instance, by the fair correlation between the rho(I) or rho(R) values and the atomic charges of the imine carbon of the unsubstitued phenyl derivatives as well as by the correlations of the relevant bond orders and/or bond lengths both with the substituent parameters and with the atomic charges.  相似文献   

11.
There are conflicting reports on the origin of the effect of Y substituents on the S-H bond dissociation enthalpies (BDEs) in 4-Y-substituted thiophenols, 4-YC(6)H(4)S-H. The differences in S-H BDEs, [4-YC(6)H(4)S-H] - [C(6)H(5)S-H], are known as the total (de)stabilization enthalpies, TSEs, where TSE = RSE - MSE, i.e., the radical (de)stabilization enthalpy minus the molecule (de)stabilization enthalpy. The effects of 4-Y substituents on the S-H BDEs in thiophenols and on the S-C BDEs in phenyl thioethers are expected to be almost identical. Some S-C TSEs were therefore derived from the rates of homolyses of a few 4-Y-substituted phenyl benzyl sulfides, 4-YC(6)H(4)S-CH(2)C(6)H(5), in the hydrogen donor solvent 9,10-dihydroanthracene. These TSEs were found to be -3.6 +/- 0.5 (Y = NH(2)), -1.8 +/- 0.5 (CH(3)O), 0 (H), and 0.7 +/- 0.5 (CN) kcal mol(-1). The MSEs of 4-YC(6)H(4)SCH(2)C(6)H(5) have also been derived from the results of combustion calorimetry, Calvet-drop calorimetry, and computational chemistry (B3LYP/6-311+G(d,p)). The MSEs of these thioethers were -0.6 +/- 1.1 (NH(2)), -0.4 +/- 1.1 (CH(3)O), 0 (H), -0.3 +/- 1.3 (CN), and -0.8 +/- 1.5 (COCH(3)) kcal mol(-1). Although all the enthalpic data are rather small, it is concluded that the TSEs in 4-YC(6)H(4)SH are largely governed by the RSEs, a somewhat surprising conclusion in view of the experimental fact that the unpaired electron in C(6)H(5)S(*) is mainly localized on the S. The TSEs, RSEs, and MSEs have also been computed for a much larger series of 4-YC(6)H(4)SH and 4-YC(6)H(4)SCH(3) compounds by using a B3P86 methology and have further confirmed that the S-H/S-CH(3) TSEs are dominated by the RSEs. Good linear correlations were obtained for TSE = rho(+)sigma(p)(+)(Y), with rho(+) (kcal mol(-1)) = 3.5 (S-H) and 3.9 (S-CH(3)). It is also concluded that the SH substituent is a rather strong electron donor with a sigma(p)(+)(SH) of -0.60, and that the literature value of -0.03 is in error. In addition, the SH rotational barriers in 4-YC(6)H(4)SH have been computed and it has been found that for strong electron donating (ED) Ys, such as NH(2), the lowest energy conformer has the S-H bond oriented perpendicular to the aromatic ring plane. In this orientation the SH becomes an electron withdrawing (EW) group. Thus, although the OH group in phenols is always in-plane and ED irrespective of the nature of the 4-Y substituent, in thiophenols the SH switches from being an ED group with EW and weak ED 4-Ys, to being an EW group for strong ED 4-Ys.  相似文献   

12.
Brown and Okamoto (J. Am. Chem. Soc. 1958, 80, 4979) derived their electrophilic substitutent constants, sigma(p)+, from the relative rates of solvolysis of ring-substituted cumyl chlorides in an acetone/water solvent mixture. Application of the Hammett equation to the rates for the meta-substituted cumyl chlorides, where there could be no resonance interaction with the developing carbocation, gave a slope, rho(+) = -4.54 ( identical with 6.2 kcal/mol free energy). Rates for the para-substituted chlorides were then used to obtain sigma(p)+ values. We have calculated gas-phase C-Cl heterolytic bond dissociation enthalpy differences, Delta BDE(het) (= BDE(het)(4-YC(6)H(4)CMe(2)Cl) - BDE(het)(C(6)H(5)CMe(2)Cl)), for 16 of the 4-Y substituents employed by Brown and Okamoto. The plot of Delta BDE(het) vs sigma(p)+ gave rho(+) (SD) = 16.3 (2.3) kcal/mol, i.e., a rho(+) value roughly 2.5 times greater than experiment. Inclusion of solvation (water) energies, calculated using three continuum solvent models, reduced rho(+) and SD. The computationally least expensive model used, SM5.42R (Li et al. Theor. Chem. Acc. 1999, 103, 9) gave the best agreement with experiment. This model yielded rho(+) (SD) = 7.7 (0.9) kcal/mol, i.e., a rho(+) value that is only 24% larger than experiment.  相似文献   

13.
A series of aryl-substituted N-hydroxyphthalimides (X-NHPIs) containing either electron-withdrawing groups (4-CH(3)OCO, 3-F) or electron-donating groups (4-CH(3), 4-CH(3)O, 3-CH(3)O, 3,6-(CH(3)O)(2)) have been used as catalysts in the aerobic oxidation of primary and secondary benzylic alcohols. The selective formation of aromatic aldehydes was observed in the oxidation of primary alcohols; aromatic ketones were the exclusive products in the oxidation of secondary alcohols. O-H bond dissociation enthalpies (BDEs) of X-NHPIs have been determined by using the EPR radical equilibration technique. BDEs increase with increasing the electron-withdrawing properties of the aryl substituent. Kinetic isotope effect studies and the increase of the substrate oxidation rate by increasing the electron-withdrawing power of the NHPI aryl substituent indicate a rate-determining benzylic hydrogen atom transfer (HAT) from the alcohol to the aryl-substituted phthalimide-N-oxyl radical (X-PINO). Besides enthalpic effects, polar effects also play a role in the HAT process, as shown by the negative rho values of the Hammett correlation with sigma(+) and by the decrease of the rho values (from -0.54 to -0.70) by increasing the electron-withdrawing properties of the NHPI aryl substituent. The relative reactivity of 3-CH(3)O-C(6)H(4)CH(2)OH and 3,4-(CH(3)O)(2)-C(6)H(3)CH(2)OH, which is higher than expected on the basis of the sigma(+) values, the small values of relative reactivity of primary vs secondary benzylic alcohols, and the decrease of the rho values by increasing the electron-withdrawing properties of the NHPI aryl substituent, suggest that the HAT process takes place inside a charge-transfer (CT) complex formed by the X-PINO and the benzylic alcohol.  相似文献   

14.
The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.  相似文献   

15.
The bond dissociation energies of the benzylic C-H bond of a series of 16 para-substituted toluene compounds (p-X-C(6)H(4)CH(3)) have been calculated with the density functional method (BLYP/6-31G). The calculated substituent effects correlate well with experimental rates of dimerization of para-substituted alpha,beta,beta-trifluorostyrenes and rearrangement of methylenearylcyclopropanes. Both electron-donating and electron-withdrawing groups reduce the bond dissociation energy (BDE) of the benzylic C-H bond because both groups cause spin delocalization from the benzylic radical center. The calculated spin density variations at the benzylic radical centers correlate well with both the ESR hyperfine coupling constants determined by Arnold et al. and the calculated radical effects of the substituents. The relative radical stabilities are mainly determined by the spin delocalization effect of the substituents, and polar effect of the substituents are not important in the current situation. The ground state effect is also found to influence the C-H BDE.  相似文献   

16.
In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311 + +g(2df,2p)//UB3LYP/6-31 +g(d) level. It was found that the substituents exerted similar effects on the X-H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ^+) of 2- and 6-Y-CIoHsX-H (X=NH and O only) varied violently. The origin of the substituent effects on the X-H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net. substituent effects.  相似文献   

17.
Chemical intuition suggests that the stabilization of a carbon-centered free radical by a substituent X would be the greatest for a prim and least for a more stable tert radical because of "saturation". However, analysis of a comprehensive recent set of bond dissociation energies computed by Coote and co-workers (Phys. Chem. Chem. Phys. 2010, 12, 9597) and transformed into radical stabilization energies (RSE) suggests that this supposition is often violated. The RSE for a given X depends not only on the nature of X but also on the ordinality (i.e., prim, sec, or tert) of the radical onto which it is substituted. For substituents that stabilize by electron delocalization but also contain electron-withdrawing centers, such as the carbonyl function, the stabilization of XCMe(2)(?) compared with HCMe(2)? is greater than that for XCH(2)? compared with HCH(2)?. However, for substituents that stabilize by lone-pair electron donation, such as N or O centers, the order is strongly reversed. This contrast can be qualitatively rationalized by considering charge-separated VB contributors to the radical structure (R(2)C(+)-X(-?) and R(2)C(-)-X(+?)) and the contrasting effects of methyl substituents on them. This conclusion is not dependent on the particular definition used for RSE.  相似文献   

18.
19.
利用密度泛函理论M062X/6-31++G(d,p)方法,对27种具有不同取代基(甲基、羟甲基和甲氧基)的木质素三聚体模型化合物的Cα-O和Cβ-O键均裂解离能进行了理论计算,探究了不同位置取代基对醚键解离能的影响规律。结果表明,当R2或R3位氢原子仅有一个被甲氧基取代时,Cβ-O键解离能变化很小;当R2、R3位氢原子均被甲氧基取代时,Cβ-O键解离能明显降低;且R4、R5位甲氧基能强化R2、R3位甲氧基对Cβ-O键解离能的降低程度,而不受R1位取代基的影响。当R4、R5位氢原子相继被甲氧基取代时,Cα-O键解离能逐渐降低,且R2、R3位甲氧基也能强化R4、R5位甲氧基对Cα-O键解离能的降低程度。当R1位氢原子相继被甲基、羟甲基取代时,Cα-O键解离能逐渐升高,然而R2、R3位甲氧基会弱化R1位甲基、羟甲基对Cα-O键解离能的升高程度;R1位甲基不会影响Cβ-O键解离能,羟甲基却能明显提高Cβ-O键解离能。  相似文献   

20.
The effect of substituents on the strength of N-X (X = H, F, and Cl) bonds has been investigated using the high-level W2w thermochemical protocol. The substituents have been selected to be representative of the key functional groups that are likely to be of biological, synthetic, or industrial importance for these systems. We interpreted the effects through the calculation of relative N-X bond dissociation energies (BDE) or radical stabilization energies (RSE(NX)). The BDE and RSE(NX) values depend on stabilizing/destabilizing effects in both the reactant molecule and the product radical of the dissociation reactions. To assist us in the analysis of the substituent effects, a number of additional thermochemical quantities have been introduced, including molecule stabilization energies (MSE(NX)). We find that the RSE(NH) values are (a) increased by electron-donating alkyl substituents or the vinyl substituent, (b) increased in imines, and (c) decreased by electron-withdrawing substituents such as CF(3) and carbonyl moieties or through protonation. A different picture emerges when considering the RSE(NF) and RSE(NCl) values because of the electronegativities of the halogen atoms. The RSE(NX)s differ from the RSE(NH) values by an amount related to the stabilization of the N-halogenated molecules and given by MSE(NX). We find that substituents that stabilize/destabilize the radicals also tend to stabilize/destabilize the N-halogenated molecules. As a result, N-F- and N-Cl-containing molecules that include alkyl substituents or correspond to imines are generally associated with RSE(NF) and RSE(NCl) values that are less positive or more negative than the corresponding RSE(NH). In contrast, N-F- and N-Cl-containing molecules that include electron-withdrawing substituents or are protonated are generally associated with RSE(NF) and RSE(NCl) values that are more positive or less negative than the corresponding RSE(NH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号