首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the study we tried to answer two questions. First, does X-Z homolytic bond dissociation energy (BDE) of Y-C6H4-X-Z obey the Hammett relationship? Second, if it does what factors determine the magnitude and sign of the slope (rho+) of Hammett regression against substituent sigma(p)(+) constants? We collected a large number of X-Z BDEs for over one-thousand Y-C6H4-X-Z systems using the RMP2/6-311++G**//UB3LYP/6-31G* method. We found that remote substituent effects on X-Z BDEs are determined by both the ground effect (i.e. stabilization/destabilization of X-Z by the substituents) and the radical effect (i.e. stabilization/destabilization of X. by the substituents). The ground or radical effect is determined by the electron demand of X-Z or X. in the same way as the deprotonation enthalpy of HOOC-C6H4-X-Z or HOOC-C6H4-X. is affected by X-Z or X. . As a result, rho+ (BDE) for X-Z bond homolysis can be quantitatively predicted by using the change in deprotonation enthalpy from HOOC-C6H4-X-Z to HOOC-C6H4-X. .  相似文献   

2.
UB3LYP/6-311++g**//UB3LYP/6-31+g* and ROMP2/6-311++g**//UB3LYP/6-31+g* methods were used to calculate (i) N-X bond dissociation energies (BDE) in 4-YC6H4NH-X and (ii) N-H BDEs in 4-YC6H4NU-H, where Y = H, Me, OCH3, SMe, NH2, NMe2, SiMe3, F, Cl, CN, COOH, CF3, and NO2, X = H, CH3, F, Cl, and Li, and U = H, F, and CH(3). It was found that N-H BDEs of 4-YC6H4NH2 have a positive correlation with the substituent sigma(p+) constants. The slope (rho+) is about 3.0-4.3 kcal/mol, which is in good agreement with the experimental results. It was also found that the substituent effects on N-X BDEs of 4-YC6H4NH-X change considerably when X changes. rho(+)values for N-CH3, N-F, N-Cl, and N-Li BDEs were calculated to be 3.1-4.6, 1.3-1.9, 1.8-2.6, and 4.9-6.8 kcal/mol, respectively. The reason for the variation of substituent effects was proposed to be the ground-state effect, i.e., the interaction between the intact NH-X moiety and the parasubstituents. Finally, alpha-substitution was found to be able to significantly change the substituent effects. rho(+)values for N-H BDEs of 4-C6H4NCH3(-)H and 4-C6H4NF-H are 2.5-4.0 and 1.7-1.9 kcal/mol, respectively.  相似文献   

3.
Bond dissociation enthalpy differences, Z-X DeltaBDE = BDE(4-YC(6)H(4)Z-X) - BDE(C(6)H(5)Z-X), for Z = CH(2) and O are largely independent of X and are determined mainly by the stabilization/destabilization effect of Y on the 4-YC(6)H(4)Z(*) radicals. The effects of Y are small (< or =2 kcal/mol for all Y) for Z = CH(2), but they are large for Z = O, where good correlations with sigma(p)(+)(Y) yield rho(+) = 6.5 kcal/mol. For Z = NH, two sets of electrochemically measured N-H DeltaBDEs correlate with sigma(p)(+)(Y), yielding rho(+) = 3.9 and 3.0 kcal/mol. However, in contrast to the situation with phenols, these data indicate that the strengthening effect on N-H BDEs of electron-withdrawing (EW) Y's is greater than the weakening effect of electron-donating (ED) Y's. Attempts to measure N-H DeltaBDEs in anilines using two nonelectrochemical techniques were unsuccessful; therefore, we turned to density functional theory. Calculations on 15 4-YC(6)H(4)NH(2) gave N-H DeltaBDEs correlating with sigma(p)(+) (rho(+) = 4.6 kcal/mol) and indicated that EW and ED Y's had comparable strengthening and weakening effects, respectively, on the N-H bonds. To validate theory by connecting it to experiment, the N-H DeltaBDEs of four 4,4'-disubstituted diphenylamines and five 3,7-disubstituted phenothiazines were both calculated and measured by the radical equilibration EPR technique. For all compounds, theory and experiment agreed to better than 1 kcal/mol. Dissection of N-H DeltaBDEs in 4-substituted anilines and O-H DeltaBDEs in 4-substituted phenols into interaction enthalpies between Y and NH(2)/OH (molecule stabilization/destabilization enthalpy, MSE) and NH*/O* (radical stabilization/destabilization enthalpy, RSE) reveals that for both groups of compounds, ED Y's destabilize the molecule and stabilize the radical, while the opposite holds true for EW Y's. However, in the phenols the effects of substituents on the radical are roughly 3 times as great as those in the molecule, whereas in the anilines the two effects are of comparable magnitudes. These differences arise from the stronger ED character of NH(2) vs OH and the weaker EW character of NH* vs O*. The relatively large contributions to N-H BDEs in anilines arising from interactions in the molecules suggested that N-X DeltaBDEs in 4-YC(6)H(4)NH-X would depend on X, in contrast to the lack of effect of X on O-X and CH(2)-X DeltaBDEs in 4-YC(6)H(4)O-X and 4-YC(6)H(4)CH(2)-X. This suggestion was confirmed for X = CH(3), H, OH, and F, for which the calculated NH-X DeltaBDEs yielded rho(+) = 5.0, 4.6, 4.0, and 3.0 kcal/mol, respectively.  相似文献   

4.
For some time it has been assumed that the direction and magnitude of the effects of Y-substituents on the Z-X bond dissociation enthalpies (BDE's) in compounds of the general formula 4-YC(6)H(4)Z-X could be correlated with the polarity of the Z-X bond undergoing homolysis. Recently we have shown by DFT calculations on 4-YC(6)H(4)CH(2)-X (X = H, F, Cl, Br) that the effects of Y on CH(2)-X BDE's are small and roughly equal for each X, despite large changes in C-X bond polarity. We then proposed that when Y have significant effects on Z-X BDE's it is due to their stabilization or destabilization of the radical. This proposal has been examined by studying 4-YC(6)H(4)O-X BDE's for X = H, CH(3), and CH(2)C(6)H(5) both by theory and experiment. The magnitudes of the effects of Y on O-X BDE's were quantified by Hammett type plots of DeltaBDE's vs sigma(+) (Y). Calculations reveal that changes in O-X BDE's induced by changing Y are large and essentially identical (rho(+) = 6.7-6.9 kcal mol(-)(1)) for these three classes of compounds. The calculated rho(+) values are close to those obtained experimentally for X = H at ca. 300 K and for X = CH(2)C(6)H(5) at ca. 550 K. However, early literature reports of the effects of Y on O-X BDE's for X = CH(3) with measurements made at ca. 1000 K gave rho(+) approximately 3 kcal mol(-)(1). We have confirmed some of these earlier, high-temperature O-CH(3) BDE's and propose that at 1000 K, conjugating groups such as -OCH(3) are essentially free rotors, and no longer lie mainly in the plane of the aromatic ring. As a consequence, the 298 K DFT-calculated DeltaBDE for 4-OCH(3)-anisole of -6.1 kcal mol(-)(1) decreases to -3.8 kcal mol(-)(1) for free rotation, in agreement with the ca. 1000 K experimental value. In contrast, high-temperature O-CH(3) DeltaBDE's for three anisoles with strongly hindered substituent rotation are essentially identical to those that would be observed at ambient temperatures. We conclude that substituent effects measured at elevated temperatures may differ substantially from those appropriate for 298 K.  相似文献   

5.
The C–H homolytic bond dissociation enthalpies (BDEs) of 27 heterocyclic compounds of small systems (less than 8 non-hydrogen atoms) were evaluated by the composite ab initio methods of G4 and CBS-Q. In addition, the C–H BDEs of an extended database including 60 heterocyclic compounds were assessed by 16 DFT functionals. The correlation between the theoretical and experimental values reveals that the BMK functional provided the lowest root mean square error (RMSE) of 10.2 kJ/mol, and the correlation coefficient (R2) was 0.955. The mean deviation (MD), mean absolute deviation (MAD) of BMK are 0.1 kJ/mol and 7.9 kJ/mol separately. Therefore, we utilized BMK to research C–H BDEs together with the substituent effects of five-membered and six-membered heterocyclic compounds including large systems. The nature of C–H BDE change pattern was analyzed by the natural bond orbital (NBO).  相似文献   

6.
On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB?H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.0±1.84 kJ/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.  相似文献   

7.
将基于平均影响值(Mean impact value,MIV)的反向传播神经网络(Back propagation neural netowrk,BPNN)(MIV-BPNN)方法用于提高密度泛函理论(Density functional theory,DFT)计算Y—NO(Y=N,S,O及C)键均裂能的精度.利用量子化学计算和MIV-BPNN联合方法计算92个含Y—NO键的有机分子体系的均裂能.结果表明,相对于单一的密度泛函理论B3LYP/6-31G(d)方法,利用全参数下的BPNN方法计算92个有机分子均裂能的均方根误差从22.25 kJ/mol减少到1.84 kJ/mol,而MIV-BPNN方法使均方根误差减少到1.36 kJ/mol,可见B3LYP/6-31G(d)和MIV-BPNN联合方法可以提高均裂能的量子化学计算精度,并可预测实验上无法获取的均裂能值.  相似文献   

8.
Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs.  相似文献   

9.
Brown and Okamoto (J. Am. Chem. Soc. 1958, 80, 4979) derived their electrophilic substitutent constants, sigma(p)+, from the relative rates of solvolysis of ring-substituted cumyl chlorides in an acetone/water solvent mixture. Application of the Hammett equation to the rates for the meta-substituted cumyl chlorides, where there could be no resonance interaction with the developing carbocation, gave a slope, rho(+) = -4.54 ( identical with 6.2 kcal/mol free energy). Rates for the para-substituted chlorides were then used to obtain sigma(p)+ values. We have calculated gas-phase C-Cl heterolytic bond dissociation enthalpy differences, Delta BDE(het) (= BDE(het)(4-YC(6)H(4)CMe(2)Cl) - BDE(het)(C(6)H(5)CMe(2)Cl)), for 16 of the 4-Y substituents employed by Brown and Okamoto. The plot of Delta BDE(het) vs sigma(p)+ gave rho(+) (SD) = 16.3 (2.3) kcal/mol, i.e., a rho(+) value roughly 2.5 times greater than experiment. Inclusion of solvation (water) energies, calculated using three continuum solvent models, reduced rho(+) and SD. The computationally least expensive model used, SM5.42R (Li et al. Theor. Chem. Acc. 1999, 103, 9) gave the best agreement with experiment. This model yielded rho(+) (SD) = 7.7 (0.9) kcal/mol, i.e., a rho(+) value that is only 24% larger than experiment.  相似文献   

10.
The homolytic C-H bond dissociation enthalpies (BDEs) of toluene and its para- and meta-substituted derivatives have been estimated by using the (RO)B3LYP/6-311++G(2df,2p)//(U)B3LYP/6-311G(d,p) procedure. The performance of two other hybrid functionals of DFT, namely, B3PWP91 and O3LYP, has also been evaluated using the same basis sets and molecules. Our computed results are compared with the available experimental values and are found to be in good agreement. The (RO)B3LYP and (RO)O3LYP procedures are found to produce reliable BDEs for the C-H bonds in toluene and the C-X (X = F, Cl) bond in alpha-substituted toluene (C6H5-CH2X) and their substituted derivatives. The substituent effect on the BDE values has been analyzed in terms of the ground-state effect and the radical effect. The effect of polarization of the C-H bond on the substituent effect is also analyzed. The BDE(C-H) and BDE(C-X) values for alpha-substituted (X = F and Cl) toluenes with a set of para substituents are presented for the first time.  相似文献   

11.
UB3LYP/6-311++g(2df,p) and RMP2/6-311++g(d,p) methods were used to calculate B—Z bond dissociation energies (BDE) of para-substituted phenylboranes (X—C6H4—BH—Z). It was found that the slopes () of regressions between B—Z BDEs and substituent p constants increase in the order B—Cl (between –0.24 and 0.21 kcal/mol) < B—H (0.06-0.33 kcal/mol) < B—F (0.48-0.78 kcal/mol) < B—CH3 (0.83–1.28 kcal/mol) < B—Li (2.62-3.73 kcal/mol). Since all the homolysis reactions give the same boron radical, the large variation of indicates that the substituent effects on energies of the ground-state molecules are important for the substituent effects on BDEs. However, the ground-state stabilization energies, calculated using either Nau's method or our method, do not show any correlation with the polarization of the B—Z bond as defined by the electronegativity difference between the group X—C6H4—BH and Z. Therefore, the theory that the remote substituent effects on Y—Z BDEs are dependent on the Y—Z polarity should be discarded.  相似文献   

12.
13.
In recent years, there has been growing interest in selecting efficient antioxidants with low toxicity to reduce the damage of free radicals. Among these antioxidants, flavonoids have been paid much attention, owing to their excellent antioxidative and pharmacological activities1. Up to now, many efforts have been given to summarize the structure-activity relationships (SAR) for flavonoids. It has been widely accepted that two structural factors are critical for flavonoids to enhance the…  相似文献   

14.
Recently, O-H bond dissociation enthalpies (BDEs) have been successfully used to express the free radical scavenging ability of polyphenolic antioxidants. In this work, the BDEs of phenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, 1,2,4-benzenetriol, and 5-hydroxypyrogallol have been calculated at B3LYP/6-311G++(3df, 3pd) and used to elucidate the effect of OH groups. Increasing the number of OH groups in the adjacent (vicinal) position decreases the BDE of phenols. Increasing the number of O-H groups in the alternative position C(1,3) as in resorcinol and C(1,3,5) as in phloroglucinol does not show any notable change in the BDEs when compared to that of OH in C(1) as in phenol. 5-Hydroxypyrogallol has the smallest BDE (250.3 kJ mol(-1)) followed by pyrogallol (289.4 kJ mol(-1)), then 1,2,4-benzenetriol (294.8 kJ mol(-1)), and then catechol (312.8 kJ mol(-1)). Overall, our results indicated that the presence of ortho and para hydroxy groups reduces the BDEs. An intramolecular hydrogen bond (IHB) develops due to the ortho arrangement of OH's and plays a dominant role in decreasing the BDEs. This key study on phenols showed that the reactive order of OH position in the benzene ring is the following: 5-hydroxypyrogallol > pyrogallol > 1,2,4-benzenetriol > catechol > hydroquinone > phenol approximately resorcinol approximately phloroglucinol.  相似文献   

15.
The equilibrium acidities (pK(AH)s) and the oxidation potentials of the congugate anions [E(ox)(A(-))s] were determined in dimethyl sulfoxide (DMSO) for eight ketones of the structure GCOCH(3) and 20 of the structure RCOCH(2)G, (where R = alkyl, phenyl and G = alkyl, aryl). The homolytic bond dissociation energies (BDEs) for the acidic C-H bonds of the ketones were estimated using the equation BDE(AH) = 1.37pK(AH) + 23.1E(ox)(A(-)) + 73.3. While the equilibrium acidities of GCOCH(3) were found to be dependent on the remote substituent G, the BDE values for the C-H bonds remained essentially invariant (93.5 +/- 0.5 kcal/mol). A linear correlation between pK(AH) values and [E(ox)(A(-))s] was found for the ketones. For RCOCH(2)G ketones, both pK(AH) and BDE values for the adjacent C-H bonds are sensitive to the nature of the substituent G. However, the steric bulk of the aryl group tends to exert a leveling effect on BDEs. The BDE of alpha-9-anthracenylacetophenone is higher than that of alpha-2-anthracenylacetophenone by 3 kcal/mol, reflecting significant steric inhibition of resonance in the 9-substituted system. A range of 80.7-84.4 kcal/mol is observed for RCOCH(2)G ketones. The results are discussed in terms of solvation, steric, and resonance effects. Ab initio density functional theory (DFT) calculations are employed to illustrate the effect of steric interactions on radical and anion geometries. The DFT results parallel the trends in the experimental BDEs of alpha-arylacetophenones.  相似文献   

16.
利用密度泛函理论M062X/6-31++G(d,p)方法,对27种具有不同取代基(甲基、羟甲基和甲氧基)的木质素三聚体模型化合物的Cα-O和Cβ-O键均裂解离能进行了理论计算,探究了不同位置取代基对醚键解离能的影响规律。结果表明,当R2或R3位氢原子仅有一个被甲氧基取代时,Cβ-O键解离能变化很小;当R2、R3位氢原子均被甲氧基取代时,Cβ-O键解离能明显降低;且R4、R5位甲氧基能强化R2、R3位甲氧基对Cβ-O键解离能的降低程度,而不受R1位取代基的影响。当R4、R5位氢原子相继被甲氧基取代时,Cα-O键解离能逐渐降低,且R2、R3位甲氧基也能强化R4、R5位甲氧基对Cα-O键解离能的降低程度。当R1位氢原子相继被甲基、羟甲基取代时,Cα-O键解离能逐渐升高,然而R2、R3位甲氧基会弱化R1位甲基、羟甲基对Cα-O键解离能的升高程度;R1位甲基不会影响Cβ-O键解离能,羟甲基却能明显提高Cβ-O键解离能。  相似文献   

17.
The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.  相似文献   

18.
19.
王华静  傅尧  王晨  郭庆祥 《化学学报》2008,66(3):362-370
利用六种密度泛函理论方法(B3LYP, B3P86, MPW1K, TPSS1KCIS, X3LYP, BMK)对碳氯键离解能进行理论计算,结果发现几种新发展的密度泛函(DFT)方法用于碳氯键离解能的计算比传统的B3LYP有较大的改善,其中对能量估算相对准确的B3P86方法对碳氯键离解能的计算精度最高,对17个分子中碳氯键离解能计算的平均绝对偏差为6.58 kJ/mol。最后运用B3P86方法对一系列环境危害较大,但可通过光化学降解和生物降解的氯代有机物的碳氯键离解能值进行预测,并讨论了影响碳氯键离解能的结构性质关系。  相似文献   

20.
The bond dissociation enthalpies (BDEs) of sulfur and selenium ylides have been estimated by applying MP2/6-311++G(3df,2p)//MP2/6-31G(d,p), G3, and other computational methods. Computed sulfoxide bond enthalpies were compared to experimental results to ensure the reliability of the computational methods before extending to related compounds. The examined ylides include the following: sulfoxides, sulfilimines, S,C-sulfonium ylides, and selenoxides. Selenoxides have BDEs about 10 kcal/mol smaller than the corresponding sulfoxides. N-H sulfilimines and CH2-S,C-sulfonium ylides have low BDEs, unless the sulfilimine or S,C-sulfonium ylide is stabilized by an electronegative substituent on N or C, respectively. Incorporation of the S or Se into a thiophene or selenophene-type ring lowers the BDE for the ylide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号