首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vlase L  Imre S  Leucuta S 《Talanta》2005,66(3):659-663
A rapid and sensitive high-performance liquid chromatographic method has been developed for the simultaneous determination of the antidepressant fluoxetine and its active metabolite norfluoxetine in human plasma using paroxetine as internal standard. After liquid-liquid extraction, the compounds were separated on a C18 column using as mobile phase acetonitrile and 40 mM potassium dihydrogen phosphate buffer (pH 2.3) in the ratio 31:69 (v/v). The quantification of fluoxetine and norfluoxetine was made by fluorescence detection at Ex/Em 230/312 nm. The assay for each analyte was linear over the ranges 1-39 and 0.9-36 ng/ml, respectively. For both compounds intra- and inter-day accuracy and precision ranged between −7.9-12.4 and 0.7-14.7%, respectively. The method was applied to the analysis of plasma samples obtained from healthy subjects treated with one single oral dose of 40 mg fluoxetine.  相似文献   

2.
A rapid, sensitive and selective bioanalytical method was developed for the simultaneous determination of fluoxetine and its primary metabolite norfluoxetine in human plasma. Sample preparation was based on supported liquid extraction (SLE) using methyl tert‐butyl ether to extract the analytes from human plasma. Chromatography was performed on a Synergi 4 μ polar‐RP column using a fast gradient. The ionization was optimized using ESI (+) and selectivity was achieved by tandem mass spectrometric analysis using MRM functions, m/z 310 → 44 for fluoxetine, m/z 296 → 134 for norfluoxetine and m/z 315 → 44 for fluoxetine‐d5 (internal standard). The method is linear over the range of 0.05–20 ng/mL (using a human plasma sample volume of 0.1 mL) with a coefficient determination of greater than 0.999. The method is accurate and precise with intra‐batch and inter‐batch accuracy (%bias) of <±15% and precision (%CV) of <15% for both analytes. A run time of 4 min means a high throughput of samples can be achieved. To our knowledge, this method appears to be the most sensitive one reported so far for the quantitation of fluoxetine and norfluoxetine and can be used for routine therapeutic drug monitoring or pharmacokinetic studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive method for the simultaneous determination of loratadine and its major active metabolite descarboethoxyloratadine (DCL) in plasma was developed, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. The samples were extracted from plasma with toluene followed by back-extraction into formic acid (2%) for DCL after which the toluene containing the loratadine was evaporated, the analyte reconstituted and combined with the DCL back-extract. Chromatography was performed on a Phenomenex Luna C18 (2) 5-microm, 150x2.1-mm column with a mobile phase consisting of acetonitrile-0.1% formic acid using gradient elution (10 to 90% acetonitrile in 2 min) at a flow-rate of 0.3 ml/min. Detection was achieved by a Perkin-Elmer API 2000 mass spectrometer (LC-MS-MS) set at unit resolution in the multiple reaction monitoring mode. TurbolonSpray ionisation was used for ion production. The mean recovery for loratadine and descarboethoxyloratadine was 61 and 100%, respectively, with a lower limit of quantification at 0.10 ng/ml for both the analyte and its metabolite. This is the first assay method described for the simultaneous determination of loratadine and descarboethoxyloratadine in plasma using one chromatographic run. The method is sensitive and reproducible enough to be used in pharmacokinetic studies.  相似文献   

4.
A sensitive method for the determination of 3-desmethylthiocolchicine in plasma was developed, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. The plasma samples were extracted with ethyl acetate and separated on a Phenomenex Luna C18(2) 5 microm, 150x2 mm column with a mobile phase consisting of acetonitrile-0.005% formic acid (350:650, v/v) at a flow rate of 0.35 ml/min. Detection was achieved by an Applied Biosystems API 2000 mass spectrometer (LC-MS-MS) set at unit resolution in the multiple reaction monitoring mode. TurbolonSpray ionisation was used for ion production. The mean recovery for 3-desmethylthiocolchicine was 70%, with a lower limit of quantification set at 0.39 ng/ml. The increased selectivity of mass spectrometric (MS-MS) detection allowed us to distinguish between thiocolchicoside and its primary metabolite 3-desmethylthiocolchicine in human plasma, thereby giving more insight about the pharmacokinetics of the drug in humans.  相似文献   

5.
A simple, specific and sensitive high-performance liquid chromatography — electrospray tandem mass spectrometry method is developed for the simultaneous determination of fluoxetine and its metabolite norfluoxetine in human plasma. Plasma samples were simply treated with acetonitrile to precipitate and remove proteins and the isolated supernatants were directly injected into the high-performance liquid chromatography — electrospray tandem mass spectrometry system. Chromatographic separation of the analytes was achieved on a Discovery C18 (100 × 2.1 mm I.D., particle size 3.0 μm) column using 0.1% formic acid in water — acetonitrile (40: 60) as mobile phase with a flow rate of 0.2 mL/min. Diazepam was used as the internal standard. The compounds were ionized in the electrospray ionization source of the mass spectrometer and were detected by selected reaction ion monitoring of the transitions of m/z 310 → m/z 44.3 for fluoxetine, m/z 296 → m/z 134 for norfluoxetine and m/z 285 → m/z 193 for the internal standard. The method has low limit of detection (LOD) of 0.02 ng/mL and 0.03 ng/mL for fluoxetine and norfluoxetine, respectively. The inter- and intra-run precision was measured to be below 5.3% (relative standard deviation) for both fluoxetine and norfluoxetine. The developed method was successfully used to investigate plasma concentrations of fluoxetine and norfluoxetine in the pharmacokinetic study of Chinese volunteers who received fluoxetine orally.  相似文献   

6.
A rapid and sensitive method for the determination of domperidone in plasma was developed, using high-performance liquid chromatographic separation with tandem mass spectrometry detection. The samples were rendered basic with 1 M Na2CO3 and the domperidone extracted using tert.-butyl methyl ether, followed by back-extraction into formic acid (2% in water). Chromatography was performed on a Phenomenex Luna C8 (2), 5 microm, 150x2 mm column with a mobile phase consisting of acetonitrile-0.02% formic acid (300:700, v/v), delivered at 0.2 ml/min. Detection was performed using an Applied Biosystems Sciex API 2000 mass spectrometer set at unit resolution in the multiple reaction monitoring mode. TurbolonSpray ionisation was used for ion production. The mean recovery of domperidone was +/- 100%, with a lower limit of quantification set at 0.189 ng/ml. This assay method makes use of the increased sensitivity and selectivity of tandem mass spectrometric detection resulting in a rapid (extraction and chromatography) and sensitive method for the determination of domperidone in human plasma, which is more sensitive than previously described methods.  相似文献   

7.
A rapid and sensitive method was developed for the simultaneous determination of fluoxetine and its primary metabolite, norfluoxetine, in plasma. It was based on a column-switching approach with a precolumn packed with large size particles coupled with a liquid chromatography–electrospray ionisation–mass spectrometry (LC-ESI-MS). After a simple centrifugation, plasma samples were directly injected onto the precolumn. The endogenous material was excluded thanks to a high flow rate while analytes were retained by hydrophobic interactions. Afterwards, the target compounds were eluted in back flush mode to an octadecyl analytical column and detected by ESI-MS. The overall analysis time per sample, from plasma sample preparation to data acquisition, was achieved in less than 4 min. Method performances were evaluated. The method showed good linearity in the range of 25–1000 ng mL–1 with a determination coefficient higher than 0.99. Limits of quantification were estimated at 25 ng mL–1 for fluoxetine and norfluoxetine. Moreover, method precision was better than 6% in the studied concentration range. These results demonstrated that the method could be used to quantify target compounds. Finally, the developed assay proved to be suitable for the simultaneous analysis of fluoxetine and its metabolite in real plasma samples.  相似文献   

8.
Fluoxetine (F) and its N-demehylated metabolite norfluoxetine (NF) are selective inhibitors of serotonin reuptake in humans. A new sensitive rapid method for the simultaneous determination of F and NF in plasma was established and validated, and was further applied to assess the bioequivalence of two oral formulations of F in 22 healthy Chinese male volunteers who received a single oral dose of each formulation (containing 20 mg of fluoxetine hydrochloride). The new method involves using liquid chromatography/tandem mass spectrometry (LC/MS/MS) in multiple reaction monitoring mode with deuterated fluoxetine (DF) as internal standard. High levels of analytical sensitivity and specificity of MS/MS detection enabled use of a simple liquid-liquid extraction procedure. The combination of a simple sample clean-up procedure and short chromatographic run-time (5 min) considerably increased the productivity of the analytical method. The method was validated for the plasma concentration range 0.27-22 ng/mL for both of the test compounds, and the calibration curves were linear with coefficients of correlation >0.999. The limit of detection was 0.1 ng/mL for plasma F and NF. Taking the plasma sample size (200 micro L) into account the new method for determination of F and NF is more sensitive than those described previously.  相似文献   

9.
In this study, a specific and quick ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was fully developed and validated for simultaneous measurement of the rat plasma levels of vortioxetine (VOR), Lu AA34443 (the major metabolite of VOR), fluoxetine and its metabolite norfluoxetine with diazepam as the internal standard (IS). After a simple protein precipitation with acetonitrile for sample preparation, the separation of the analytes were performed on an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column, with acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. The detection was achieved on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via an electrospray ionization source. Good linearity was observed in the calibration curve for each analyte. The data of precision, accuracy, matrix effect, recovery and stability all conformed to the bioanalytical method validation of acceptance criteria of US Food and Drug Administration recommendations. The newly developed UPLC–MS/MS method allowed simultaneous quantification of VOR, fluoxetine and their metabolites for the first time and was successfully applied to a pharmacokinetic study in rats.  相似文献   

10.
A rapid, selective and sensitive micromethod has been developed for the determination of fluoxetine (FLU) and its demethylated metabolite norfluoxetine (N-FLU) using a 250-microliters plasma sample and column liquid chromatography with ultraviolet detection at 226 nm. The limit of detection is 2.0 ng/ml for both FLU and N-FLU. Peak-height ratios are linear over a concentration range of 10-800 and 10-1000 ng/ml for FLU and N-FLU, respectively. Acceptable coefficients of variation are demonstrated for both within-run and day-to-day assays. Selected drugs were checked for interference. The method, which requires a very small volume of plasma, is sensitive enough for pharmacokinetic studies in animals, clinical pharmacology studies and drug monitoring in children or adult patients.  相似文献   

11.
A highly sensitive thermospray liquid chromatographic-mass spectrometric method has been developed for the simultaneous determination of FRC-8653 (I), a new calcium antagonist, and its main metabolite (M-4) in plasma. A deuterated analogue of I was added to the plasma as the internal standard. After the purification and concentration of the plasma sample on bonded-phase disposable columns, the extract was injected into the thermospray liquid chromatograph and analysed by selected-ion monitoring mass spectrometry. The calibration curves obtained were linear over the concentration range 0.5-100 ng/ml. The limits of quantification are 0.5 ng/ml for I and 1 ng/ml for M-4 in plasma, which are sufficient to evaluate plasma concentrations after oral administration to rats.  相似文献   

12.
A rapid, selective, and sensitive method is described for the purification and analysis of fluoxetine and norfluoxetine using a solid-phase extraction column and gas chromatography-electron-capture detection. Linear quantitative response curves for fluoxetine and norfluoxetine are generated over a concentration range of 20-200 ng/ml. Overall extraction efficiency of the extraction procedure is found to be greater than 90% and greater than 75% with correlation coefficients of 0.997 and 0.993 for fluoxetine and norfluoxetine, respectively.  相似文献   

13.
Summary An HPLC method with fluorescence detection has been developed for the determination of fluoxetine and its main metabolite norfluoxetine in human plasma. Pretreatment of the biological samples by liquid-liquid extraction was used to improve the sensitivity of a previously published SPE procedure. The method uses 200 μL plasma and recovery is good for both analytes. On a C8 column with a mixture of perchlorate buffer and acetonitrile as mobile phase fluoxetine, norfluoxetine and the internal standard (paroxetine) were eluted in less than 9 min, without interference from the biological matrix. Response for both analytes was linearly dependent on concentration over the range 2.5–500 ng mL−1, and repeatability (RSD%) was <4%. The limit of detection was 1 ng mL−1 for both fluoxetines. Application to plasma samples from depressed patients treated with fluoxetine gave good results. There was no interference from other common CNS drugs. This method seems to be a useful tool for clinical monitoring, because it requires small plasma samples and is highly sensitive and highly selective.  相似文献   

14.
A sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) method for the simultaneous determination of spironolactone and its active metabolite canrenone in human plasma has been developed and validated. After the addition of estazolam as the internal standard (IS), plasma samples were extracted with methylene chloride : ethyl acetate mixture (20 : 80, v/v) and separated by high-performance liquid chromatography (HPLC) on a reversed-phase C18 column with a mobile phase of methanol-water (57 : 43, v/v). Analytes were determined in a single quadrupole mass spectrometer using an atmospheric pressure chemical ionization (APCI) source. LC-APCI-MS was performed in the selected-ion monitoring (SIM) mode using target ions at m/z 341.25 for spironolactone and canrenone, m/z 295.05 for estazolam. The method was proved to be sensitive and specific by testing six different plasma batches. Calibration curves of spironolactone and canrenone were linear over the range 2-300 ng/ml. The within- and between-batch precisions (relative standard deviation (RSD)%) were lower than 10% and the accuracy ranged from 85 to 115%. The lower limit of quantification (LLOQ) was identifiable and reproducible at 2 ng/ml. The proposed method was successfully applied to study the pharmacokinetics of spironolactone and its major metabolite in healthy male Chinese volunteers.  相似文献   

15.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A capillary electrophoresis method was optimized for the stereoselective analysis of the antidepressant drug fluoxetine and its main demethylated metabolite norfluoxetine using a cyclodextrin-modified sodium phosphate buffer at pH 2.5. The combination of a neutral and a negatively charged cyclodextrin, dimethylated-beta- and phosphated-gamma-respectively, provided the baseline enantiomeric separation of the two compounds. The very low concentrations of chiral selectors employed together with the use of a high sensitivity detection cell of special design (zeta-shaped) in a diode array UV detector allowed us to reach a limit of detection of 0.005 and 0.01 microg/mL for fluoxetine and norfluoxetine, respectively. Analysis of fluoxetine and norfluoxetine standard mixtures showed a reproducibility of migration times and peak area and linearity in the concentration range of 0.1-2.0 microg/mL. The optimized method was applied to the analysis of clinical serum and plasma samples of patients under depression therapy. In all the analyzed samples the enantiomeric forms of fluoxetine and norfluoxetine were easily identified. The fluoxetine and metabolite enantiomeric ratio confirmed the stereoselectivity of the metabolic process of the fluoxetine drug in accordance with the literature data.  相似文献   

17.
Both fluoxetine (FLX) and its N-demethylated metabolite, norfluoxetine (NFLX), have been reported to be potent serotonin-reuptake inhibitors. A sensitive and reliable method that allows simultaneous quantification of their plasma levels would be valuable and was developed in this work. The procedure included extraction of FLX and NFLX from plasma, fluorescence derivatization with 4-(N-chloroformylmethyl-N-methyl) amino-7-nitro-2,1,3-benzoxadiazole (NBD-COCl), separation of the derivatives on an octadecylsilica column with acetonitrile-water (55:45,v/v) as mobile phase and fluorescence detection with emission at 537 nm and excitation at 478 nm. The calibration curves were linear for FLX and NFLX concentration over the range of 10-1000 nM (r = 0.9992 and r = 0.9997) and the limits of quantitation were 10 nM in 100 micro L of plasma. Precision of intra- and inter-day RSD of less than 12% and accuracy of intra- and inter-day RE within -6.0-13% were achieved. The method described was applied to analysis of the plasma samples from rats treated with FLX hydrochloride and to the pharmacokinetic study.  相似文献   

18.
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively.  相似文献   

19.
A selective and sensitive gas chromatographic method for simultaneous determination of sulfinpyrazone and two of its metabolites (the para-hydroxylated metabolite and the sulfone metabolite) in biological fluids using alkali flame ionization detection (AFID), electron capture detection (ECD) and mass fragmentographic detection is described. The compounds are extracted from the samples, methylated and separated on 2% OV-17 or 3% OV-225 columns. Phenylbutazone is used as internal standard. Standard curves are linear. The coefficient of variation at 10 microgram/ml of sulfinpyrazone in plasma was shown to be 1.8% (AFID), and the detection limits were 0.1 microgram/ml (AFID) and 10 ng/ml (ECD). Mass spectra of the methylated compounds are shown and serum concentration curves after oral administration of 100 mg sulfinpyrazone to two persons are determined together with the excreted amounts of drug and metabolites.  相似文献   

20.
A sensitive and specific gas chromatographic-mass spectrometric method for the simultaneous determination of angiotensin-converting enzyme inhibitor (I, CS-622) and its active desethyl metabolite (II, RS-5139) in plasma and urine was developed. Compound D5-RS-5139 was used as an internal standard and measurements were made by electron-capture negative ion chemical ionization. Extraction from plasma and urine was carried out using Sep-Pak C18 and silica cartridges. The extract of plasma or urine was treated with diazomethane followed by trifluoroacetic anhydride to convert I and II into their methyl ester trifluoroacetyl derivatives. The detection limit of I and II was 0.5 ng/ml in plasma and 5 ng/ml in urine. The proposed method was satisfactory for the determination of I and II in plasma and urine with respect to accuracy and precision. Thus it is suitable for measurement of bioavailability and pharmacokinetics of I and II in body fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号