首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerization of acrylamide in mixed micellar solutions of surfactants, initiated by NaHSO3 has been studied at 20 and 3Q° C with time variable method of thermokinetics for 1. 5-order reaction. The results indicate that the mixed micellar systems of cationic or anionic with zwitterionic surfactants (SLS/ CTAB, SLS/ TTAB, SLS/ SDS) and cationic with nonionic surfactants (Brij 357sol; CTAB, Bri-J35/TTAB, Brij35/ DTAB) have catalytic effect on the polymerization in the order, at 20° C. SLS/ SDS SLS/ TTAB SLS/ CTAB Brij35/ CTAB at 30° C SLS/ SDS SLS/ TTAB≈ / CTAB Bri-j35/ DTAB= sBrij35/ TTAB as Brij35/ CTAB, while Brij35/ SDS mixed micellar system has inhibition. These effects are attributed to the effect of the Stern layer of mixed micelles on the step of initiator (HSOT) to form free radical.  相似文献   

2.
To study the influence of the chemical nature of headgroups and the type of counterion on the process of micellization in mixed surfactant systems, the cmc's of several binary mixtures of surfactants with the same length of hydrocarbon tail but with different headgroups have been determined as a function of the monomer composition using surface tension measurements. Based on these results, the interaction parameter between the surfactant species in mixed micelles has been determined using the pseudophase separation model. Experiments were carried out with (a) the nonionic/anionic C(12)E(6)/SDS ((hexa(ethyleneglycol) mono-n-dodecyl ether)/(sodium dodecyl sulfate)), (b) amphoteric/anionic DDAO/SDS ((dodecyldimethylamine oxide)/(sodium dodecyl sulfate)), and (c) amphoteric/nonionic C(12)E(6)/DDAO mixed surfactant systems. In the case of the mixed surfactant systems containing DDAO, experiments were carried out at pH 2 and pH 8 where the surfactant was in the cationic and nonionic form, respectively. It was shown that the mixtures of the nonionic surfactants with different kinds of headgroups exhibit almost ideal behavior, whereas for the nonionic/ionic surfactant mixtures, significant deviations from ideal behavior (attractive interactions) have been found, suggesting binding between the head groups. Molecular orbital calculations confirmed the existence of the strong specific interaction between (1) SDS and nonionic and cationic forms of DDAO and between (2) C(12)E(6) and the cationic form of DDAO. In the case for the C(12)E(6)/SDS system, an alternative mechanism for the stabilization of mixed micelles was suggested, which involved the lowering in the free energy of the hydration layer. Copyright 2000 Academic Press.  相似文献   

3.
Phase behavior of mixed sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) aqueous solution was studied. The rheological properties and microstructure were investigated using a rheostat and freeze-fracture technique and are shown to be closely related to the phase behavior. Experimental investigations reveal two symmetrical aqueous two-phase systems (ATPS) in the ternary phase diagram of SDS/CTAB/H2O system. In the surfactant rich phase of ATPS or in the adjacent stoichiometric state of ATPS, the system has high viscosity because of its long range ordered structure. Lamellar phase was found in the high viscosity samples in which the cationic and anionic surfactant are in 1: 3 or 3: 1 stoichiometry. In addition, the viscosity has a tendency to increase when salt was added to the solution. The viscosity increase is due to the salt can screen the repulsion between different charged headgroups and thus reduces the effective size of surfactants and facilitates the spherical or rod likes micelles to be transformed to worm-like micelles which can form hexagonal or liquid crystal phases. Large-size salt ions like sodium sulfate (especially organic salt ions) have more significant effect on the surfactant solution viscosity. The text was submitted by the authors in English.  相似文献   

4.
Micelles of different surfactants are well known to affect chemical equilibria and reactivities by selectively sequestering the reagent substrates through electrostatic and hydrophobic interactions. In this article, the effects of micelles of various surfactants on different parameters of the Ce(IV)‐catalyzed Belousov–Zhabotinsky (BZ) oscillatory reaction at 35°C in nonstirred closed conditions are studied by employing spectrophotometry and tensiometry. Surfactants used in this study are the cationics hexadecyltrimethylammonium bromide (CTAB) and pentamethylene‐1,5‐bis(N‐hexadecyl‐N,N‐dimethylammonium)bromide gemini (Gemini), anionic sodium dodecylbenzene sulfonate (SDBS), and nonionic Brij58, whereas the binary surfactant systems used are cationic–nonionic CTAB+Brij58 and anionic–nonionic SDBS+Brij58. The results revealed that the induction period shows a definite variation with increasing concentration of different surfactants above their critical micelle concentration (cmc). The amplitudes of oscillation and absorbance maxima and minima are enhanced in the presence of micelles of CTAB and Gemini surfactants, whereas micelles of SDBS and Brij58 have almost no effect on the nature of the oscillations. However, mixed micelles of CTAB+Brij58 and SDBS+Brij58 binary mixtures show a quite different effect on the overall behavior of the oscillations. The enhanced effect of CTAB and Gemini surfactants on the overall nature of oscillations has been attributed to the positive charge on the surface of their micelles and to some extent on the presence of nitrogen in their head group. The effect of mixed binary micelles may be attributed to their synergistic nature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 659–668, 2010  相似文献   

5.
Micellar-enhanced ultrafiltration (MEUF), a surfactant-based separation process, is promising in removing multivalent metal ions from aqueous solutions. The micellar-enhanced ultrafiltration of cadmium from aqueous solution was studied in systems of anionic surfactant and mixed anionic/nonionic surfactants. The micelle sizes and zeta potentials were investigated by dynamic light scattering measurements. The effects of feed surfactant concentration, cadmium concentration and the molar ratio of nonionic surfactants to sodium dodecyl sulfate (SDS) on the cadmium removal efficiency, the rejection of SDS and nonionic surfactants and the permeate flux were investigated. The rejection efficiencies of cadmium in the MEUF operation were enhanced with higher SDS concentration and moderate Cd concentration. When SDS concentration was fixed at 3 mM, the optimal ranges of the molar ratios of nonionic surfactants to SDS for the removal of cadmium were 0.4–0.7 for Brij 35 and 0.5–0.7 for Triton X-100, respectively. With the addition of nonionic surfactants, the SDS dosage and the SDS concentration in the permeate were reduced efficiently.  相似文献   

6.
The polymerization of acrylamide in micellar solutions of cationic, anionic, zwitterionic and nonionic surfactants, initiated by NaHSO3, has been studied at 20 and 30° C with time variable method of thermokinetics for the 1. 5-order reaction in this paper. Reaction mechanism has been suggested and rate equations have been derived. The results indicate that ionic (CTAB, TTABDTAB, SDS) and zwitterionic (SLS) surfactants catalyze the polymerization in the order SDS>SLS>DTAB ≈ TTA≈ CTAB, and nonionic surfactant (Brij35) has slight inhibition effect. These effects are mainly caused by the effect of the formation of micelle- HSO3 complex on the step of initiator to form free radical.  相似文献   

7.
Oscillating reactions often employed to mimic and understand complex dynamics in biological systems are known to be affected in aggregated host environments. The dynamic evolution of the oscillatory Belousov–Zhabotinsky (BZ) reaction upon addition of increasing amounts of anionic (sodium dodecylbenzenesulfonate; SDBS), cationic (hexadecyltrimethylammonium bromide; CTAB), nonionic (polyoxyethylene(20) cetyl ether; Brij58), and binary mixtures (CTAB + Brij58 and SDBS + Brij58) of surfactants was monitored using potentiometry at 25 and 35°C under stirred batch conditions. The experimental results reveal that the oscillatory parameters of the Ce(IV)‐catalyzed BZ reaction are significantly altered depending on the concentration and nature of restricted micellar host environments. In the presence of ionic surfactants, it is proposed that the evolution of the oscillatory BZ system may be due to atypical proficiency (related to hydrophobic and electrostatic interactions) of such organized self‐assemblies to affect the reactivity by selectively confiscating some key reacting species. However, the response of the BZ system to nonionic Brij58 was attributed to the reaction among the alcoholic functional groups of the surfactant with some vital species of the BZ reaction. Moreover, the nonionic + ionic binary surfactant systems exhibited behaviors representative of both the constitutive single surfactant systems.  相似文献   

8.
表面活性剂对海藻酸钠稀水溶液剪切粘度的影响   总被引:1,自引:0,他引:1  
通过粘度法考察了不同pH值时, 阴离子聚电解质海藻酸钠(NaAlg)与阴离子表面活性剂十二烷基硫酸钠(SDS)、阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)、非离子表面活性剂辛基酚聚氧乙烯醚(TritonX-100)以及它们的复配体系的相互作用. 研究表明, 在酸性条件下, SDS和TritonX-100与NaAlg之间主要是疏水作用, 随着表面活性剂浓度的增加, 体系粘度下降直到基本不变, CTAB与NaAlg主要发生静电作用和疏水作用, 体系粘度随CTAB浓度的增加呈现先上升后下降的趋势. 在实验条件下, TritonX-100浓度为0.05 mmol·L-1时, SDS的加入, 使得NaAlg/TritonX-100体系的零剪切粘度下降, 而CTAB的加入, 在pH=3.0和5.0时, NaAlg/TritonX-100体系的零剪切粘度出现上升, 在pH=6.4时, 该体系零剪切粘度下降.  相似文献   

9.
In the present study, we investigate the self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate (SDS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of SDS, CTAB, and mixed (SDS + CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), and Amin (the minimum area per surfactant molecule at the air/water interface)) of SDS, CTAB, and (SDS + CTAB) micellar/mixed micellar systems were evaluated. The thermodynamic parameters of the micellar (SDS and CTAB), and mixed micellar (SDS + CTAB) systems were evaluated.

A schematic representation of micelles and mixed micelles.  相似文献   

10.
In this article, the effect of molecular weight on the interfacial tension and interfacial dilational viscoelasticity of polystyrene sulfonate/surfactant adsorption films at the water-octane interface have been studied by spinning drop method and oscillating barriers method respectively. The experimental results show that different interfacial behaviors can be observed in different type of polyelectrolyte/surfactant systems. PSS/cationic surfactant CTAB systems show the classical behavior of oppositely charged polyelectrolyte/surfactant systems and can be well explained by electrostatic interaction. Molecular weight of PSS plays a crucial role in the nature of adsorption film. The complex formed by CTAB and higher molecular weight PSS, which has larger dimension and stronger interaction, results in higher dilational modulus at lower surfactant bulk concentration. In the case of PSS/anionic surfactant SDS systems, the co-adsorption of PSS at interface through hydrophobic interaction with alkyl chain of SDS leads to the increase of interfacial tension and the decrease of dilational modulus at lower surfactant bulk concentration. For PSS/nonionic surfactant T × 100 systems, PSS may form a sublayer contiguous to the aqueous phase, which has little effect on interfacial tension but slightly decreases dilational modulus.  相似文献   

11.
Tensiometry, spectrophotometry, the radioactive-tracer technique, and contact angle measurements are employed to study the adsorption of mixtures of a nonionic surfactant Brij 35 and a cationic surfactant dodecylpyridinium bromide (DDPB) at interfaces between their solutions and air or Teflon. It is established that adsorption layers at both of the interfaces are enriched with Brij 35. Brij 35 adsorption on Teflon is nearly independent of the presence of DDPB. On the contrary, DDPB adsorption is enhanced in the presence of Brij 35. Negative deviations from the ideal behavior are revealed for mixtures with small fractions of Brij 35 with respect to a decrease in the interfacial tension in air-solution and Teflon-solution systems.  相似文献   

12.
(1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.  相似文献   

13.
The present research work is associated with the fluorescence investigations of binary aqueous mixed surfactants solutions of anionic bis-sulfosuccinate gemini surfactant (BSGSMA1,8) and three different conventional surfactants—anionic viz. sodium dodecyl sulfate (SDS), cationic viz. cetyl trimethyl ammonium bromide (CTAB), and nonionic surfactant viz. Triton X 100. Steady-state fluorescence spectroscopy technique has been utilized to examine the micellization behavior of aqueous solution of pure myristyl alcohol-based BSGSMA1,8 having flexible methylene chain [(CH2)8] as spacer group. Critical micelle concentration (CMC), aggregation number (N), and micropolarity of pure and mixed surfactants systems were explored during the investigations. The results revealed the best synergism behavior of prepared gemini BSGSMA1,8 with SDS as compared to CTAB and Triton X 100. The maximum reduction in the value of pyrene intensity ratio (I1/I3) was observed for gemini and SDS mixed surfactant solution. On the other hand, the increased I1/I3 value of mixed gemini with Triton X 100 exhibited that mixed surfactant system of anionic gemini BSGSMA1,8 with non-ionic Triton X 100 is not as compact as other mixed surfactant systems. Aggregation number increased and micropolarity decreased with increased concentration of gemini surfactants.  相似文献   

14.
The effect of cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium lauryl sulfate, NaLS), and nonionic (Brij‐35) surfactants on the rate of oxidation of some reducing sugars (xylose, glucose, and fructose) by alkaline hexacyanoferrate(III) has been studied in the temperature range from 35 to 50°C. The rate of oxidation is strongly inhibited in the presence of surfactant. The inhibition effect of surfactant on the rate of reaction has been observed below critical micelle concentration (CMC) of CTAB. In case of NaLS and Brij‐35, the inhibition effect was above CMC, at which the surfactant abruptly associates to form micelle. The kinetic data have been accounted for by the combination of surfactant molecule(s) with a substrate molecule in case of CTAB and distribution of substrate into micellar and aqueous pseudophase in case of NaLS and Brij‐35. The binding parameters (binding constants, partition coefficients, and free‐energy transfer from water to micelle) in case of NaLS and Brij‐35 have been evaluated with the help of Menger and Portnoy model reported for micellar inhibition. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 595–604, 2007  相似文献   

15.
The evolution of the microstructure and composition occurring in the aqueous solutions of di-alkyl chain cationic/nonionic surfactant mixtures has been studied in detail using small angle neutron scattering, SANS. For all the systems studied we observe an evolution from a predominantly lamellar phase, for solutions rich in di-alkyl chain cationic surfactant, to mixed cationic/nonionic micelles, for solutions rich in the nonionic surfactant. At intermediate solution compositions there is a region of coexistence of lamellar and micellar phases, where the relative amounts change with solution composition. A number of different di-alkyl chain cationic surfactants, DHDAB, 2HT, DHTAC, DHTA methyl sulfate, and DISDA methyl sulfate, and nonionic surfactants, C12E12 and C12E23, are investigated. For these systems the differences in phase behavior is discussed, and for the mixture DHDAB/C12E12 a direct comparison with theoretical predictions of phase behavior is made. It is shown that the phase separation that can occur in these mixed systems is induced by a depletion force arising from the micellar component, and that the size and volume fraction of the micelles are critical factors.  相似文献   

16.
The rate of the perchloric acid hydrolysis of aqueous ethyl and butyl vinyl ethers at 25.0°C, in the presence of micellar aggregates [anionic, sodium dodecyl sulfate (SDS); cationic, cetyl trymethyl ammonium bromide (CTAB); and nonionic, polyoxyethylen? 23? dodecanol, (Brij 35)], has been studied. Negligible effects were observed in the cases of cationic and nonionic micelles. Anionic micelles produce an enhancement in the reaction velocity, and the rate constants go through maxima with increasing SDS concentration. These maxima disappear in the presence of excess sodium perchlorate. All these facts are interpreted quantitatively by means of the pseudo-phase ion-exchange model.  相似文献   

17.
The flocculation behavior of anionic and cationic latex dispersions induced by addition of ionic surfactants with different polarities (SDS and cetyltrimethylammonium bromide (CTAB)) have been evaluated by rheological measurements. It was found that in identical polar surfactant systems with particle surfaces of SDS + anionic lattices and CTAB + cationic lattices, a weak and reversible flocculation has been observed in a limited concentration region of surfactant, which was analyzed as a repletion flocculation induced by the volume-restriction effect of the surfactant micelles. On the other hand, in oppositely charged surfactant systems (SDS + cationic lattices and CTAB + anionic lattices), the particles were flocculated strongly in a low surfactant concentration region, which will be based on the charge neutralization and hydrophobic effects from the adsorbed surfactant molecules. After the particles stabilized by the electrostatic repulsion of adsorbed surfactant layers, the system viscosity shows a weak maximum again in a limited concentration region. This weak maximum was influenced by the shear rate and has a complete reversible character, which means that this weak flocculation will be due to the depletion effect from the free micelles after saturated adsorption.  相似文献   

18.
Isothermal titration calorimetry (ITC), surface tensiometry, and ultrasonic velocimetry were used to characterize surfactant-maltodextrin interactions in buffer solutions (pH 7.0, 10 mM NaCl, 20 mM Trizma base, 30.0 degrees C). Experiments were carried out using three surfactants with similar nonpolar tail groups (C12) but different charged headgroups: anionic (sodium dodecyl sulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), and nonionic (polyoxyethylene 23 lauryl ether, Brij35). All three surfactants bound to maltodextrin, with the binding characteristics depending on whether the surfactant headgroup was ionic or nonionic. The amounts of surfactant bound to 0.5% w/v maltodextrin (DE 5) at saturation were < 0.3 mM Brij35, approximately 1-1.6 mM SDS, and approximately 1.5 mM DTAB. ITC measurements indicated that surfactant binding to maltodextrin was exothermic. Surface tension measurements indicated that the DTAB-maltodextrin complex was more surface active than DTAB alone but that SDS- and Brij35- maltodextrin complexes were less surface active than the surfactants alone.  相似文献   

19.
We have studied the structure and rheological behavior of viscoelastic wormlike micellar solutions in the mixed nonionic surfactants poly(oxyethylene) cholesteryl ether (ChEO15)-trioxyethylene monododecyl ether (C12EO3) and anionic sodium dodecyl sulfate (SDS)-C12EO3 using a series of glycerol/water and formamide/water mixed solvents. The obtained results are compared with those reported in pure water for the corresponding mixed surfactant systems. The zero-shear viscosity first sharply increases with C12EO3 addition and then decreases; i.e., there is a viscosity maximum. The intensity (viscosity) and position (C12EO3 fraction) of this maximum shift to lower values upon an increase in the ratio of glycerol in the glycerol/water mixed solvent, while the position of the maximum changes in an opposite way with increasing formamide. In the case of the SDS/C12EO3 system, zero-shear viscosity shows a decrease with an increase of temperature, but for the ChEO15/C12EO3 system, again, the zero-shear viscosity shows a maximum if plotted as a function of temperature, its position depending on the C12EO3 mixing fraction. In the studied nonionic systems, worm micelles seem to exist at low temperatures (down to 0 degrees C) and high glycerol concentrations (up to 50 wt %), which is interesting from the viewpoint of applications such as drag reduction fluids. Rheology results are supported by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) measurements on nonionic systems, which indicate micellar elongation upon addition of glycerol or increasing temperature and shortening upon addition of formamide. The results can be interpreted in terms of changes in the surface curvature of aggregates and lyophobicity.  相似文献   

20.
阳离子与非离子混合表面活性剂模板合成介孔SiO2   总被引:9,自引:0,他引:9  
利用各种两亲分子有序组合体构成超分子模板,合成从介观到宏观尺度不同形态的无机材料成为材料科学新崛起的研究方向[1].介孔SiO2在催化、吸附、分离介质及化学传感器等方面有广阔的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号