首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究了钛/硅复合氧化物聚酯催化剂中,二氧化硅含量对聚对苯二甲酸乙二醇酯缩聚反应的影响.催化剂XRD谱图表示,增加二氧化硅含量会抑制二氧化钛的结晶.随着二氧化硅含量的增加,钛/硅催化剂表面Lewis酸的数目和强度都减小.比表面积和Lewis表面酸性都会影响钛/硅催化剂的活性.  相似文献   

2.
Hierarchical‐structured nanotubular silica/titania hybrids incorporated with particle‐size‐controllable ultrafine rutile titania nanocrystallites were realized by deposition of ultrathin titania sandwiched silica gel films onto each nanofiber of natural cellulose substances (e.g., common commercial filter paper) and subsequent flame burning in air. The rapid flame burning transforms the initially amorphous titania into rutile phase titania, and the silica gel films suppress the crystallite growth of rutile titania, thereby achieving nano‐precise size regulation of ultrafine rutile titania nanocrystallites densely embedded in the silica films of the nanotubes. The average diameters of these nanocrystallites are adjustable in a range of approximately 3.3–16.0 nm by a crystallite size increment rate of about 2.4 nm per titania deposition cycle. The silica films transfer the electrons activated by crystalline titania and generate catalytic reactive species at the outer surface. The size‐tuned ultrafine rutile titania nanocrystallites distributed in the unique hierarchical networks significantly improve the photocatalytic performance of the rutile phase titania, thereby enabling a highly efficient photocatalytic degradation of the methylene blue dye under ultraviolet light irradiation, which is even superior to the pure anatase‐titania‐based materials. The facile stepwise size control of the rutile titania crystallites described here opens an effective pathway for the design and preparation of fine‐nanostructured rutile phase titania materials to explore potential applications.  相似文献   

3.
Precious metals such as Pd, Pt, and Rh have been utilized as the active components of many catalysts. Owing to the high cost of these metals, their loadings in catalysts must be reduced. However, reducing loadings without compromising catalytic performance is difficult. Precious metal catalysts are inevitably deactivated by severe reaction conditions (e.g., high temperature and pressure), which tend to increase of the size of the precious metal particles. Here, we review our recent work on the functionalization of supported precious metal catalysts by coverage with layers of metal oxides such as silica. Coverage with silica layers a few nanometers thick prevents aggregation of the metal particles as well as their detachment from the supports under severe reaction conditions. For example, coverage of supported Pt and Pd electrocatalysts in polymer electrolyte fuel cells with silica layers effectively improves catalyst durability by inhibiting not only particle aggregation but also the diffusion of dissolved metal species out of the catalysts. Coverage of supported precious metal photocatalysts with titania layers also enhances catalytic activity.  相似文献   

4.
Highly dispersed molybdena-titania catalyst can be prepared by an equilibrium adsorption method. In this method, molybdate anions adsorb onto the positively charged titania surfaces via electrostatic attraction by controlling the pH of the impregnating solution and they increase as an inverse function of the pH. 95Mo-NMR and UV spectroscopic studies of impregnating solution show that the polymeric species like Mo7O24 6-ions are adsorbed on titania in the acidic impregnating solution. XRD, Raman, and XPS data of the calcined samples show that mono-layer coverage of molybdenum oxide over-layer possesses a highly distorted MoO6 group with a molecular geometry resembling the distorted square pyramid. The catalytic oxidation of methanol over the surface molybdate species on titania possesses higher turnover numbers and higher selectivities of partial oxidation products than the catalysts supported on alumina, silica, zirconia, or magnesia. Changes of the surface properties either after reduction and sulfiding treatment over monolayer catalyst on titania have also been investigated. The NO chemisorption and XPS studies show that two types of active sites appeared after reduction treatment: one site is active for hydrogenation of 1,3-butadiene and the other site is active for metathesis of propene. A higher degree coordinative unsaturations of MO is required for hydrogenation than metathesis. After sulfiding treatments of the catalyst, hydrogenation of 1,3-butadiene also requires triply coordinative unsaturation, and hydrogenolysis of thiophene requires the ensemble of doubly or triply coordinative unsaturations.  相似文献   

5.
Preparation of support series for catalysts of combustion of halogenated volatile organic compounds (H-VOC's) was carried out. It was stated that all they allow preparing active catalysts however their main drawback is the lack of hardness against products of H-VOC's combustion e.g. hydrogen chloride and chlorine. Laboratory tests showed that titania and silica - titania supports were characterized by the highest hardness against chlorine derivatives. In comparison to the titania supports, low content (ca. 10 wt.%) silica-containing supports have better mechanical properties, i.e. mechanical strength and attrition resistance. In this paper the method of preparation, composition and physicochemical properties of silica - titania support are presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Although Au catalysts can be readily prepared on titania via the deposition-precipitation (DP) method, the direct application of the method similar to the preparation of silica-supported Au catalysts only results in diminished success. This paper reports a novel, efficient method to synthesize highly active Au catalysts supported on mesoporous silica (SBA-15) through a gold cationic complex precursor [Au(en)2]3+ (en = ethylenediamine) via a wet chemical process. The gold cationic precursor was immobilized on negatively charged surfaces of silica by a unique DP method that makes use of the deprotonation reaction of ethylenediamine ligands. The resulting mesoporous catalyst has been demonstrated to be highly active for CO oxidation at room temperature and even below 273 K, the activity of which is much superior to that of silica-supported Au catalysts previously prepared by various solution techniques. The pH value of the gold precursor solution plays a key role in determining the catalytic activity through the regulation of [Au(en)2]3+ deprotonation reaction and the surface interaction of silica with the gold precursor. This mesoporous gold silica catalyst has also been shown to be highly resistant to sintering because of the stabilization of Au nanoparticles inside mesopores.  相似文献   

7.
A simple and efficient approach has been set up for fabricating highly active sulfated titania-silica (SO(4)(2-)/TiO(2)-SiO(2)): Ti(SO(4))(2) was hydrolyzed in the presence of silica, making it possible to sulfate titania and form titania-silica mixed oxide in one step. This study was focused on investigating the roles of sulfate species and silica in improving the physicochemical properties and photoactivity of SO(4)(2-)/TiO(2)-SiO(2) through comparison with sulfated titania (SO(4)(2-)/TiO(2)) and sulfate-free catalysts (TiO(2) and TiO(2)-SiO(2)). Various characterization methods, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and surface photovoltage spectroscopy (SPS), were employed to test these materials. The results revealed that for SO(4)(2-)/TiO(2) and TiO(2)-SiO(2) the sole presence of either sulfate species or silica imposes negative effects on the photocatalysis behavior of titania, leading them to have negligible photoactivities. On the contrary, in the case of SO(4)(2-)/TiO(2)-SiO(2), sulfate species and silica were proved to act in a cooperative manner; therefore, the following enhanced structure and surface properties of SO(4)(2-)/TiO(2)-SiO(2) were obtained: (i) relatively well-crystallized and smaller-size (15.4 nm) anatase-phase titania was formed upon 500 degrees C calcination without forming rutile phase and (ii) the formation of active surface sulfate species promotes the separation of photoinduced electron-hole pairs and therefore accelerates the photocatalysis reaction. Therefore, its photoactivity is enhanced as a result of the favorable synergic effects between sulfate species and silica due to their simultaneous presence.  相似文献   

8.
钛硅催化材料的发展为研究有机选择氧化反应和开发环境友好化工工艺提供了新途径。钛硅混合氧化物由于制备简单、可操作性强等优点, 引起了人们的广泛重视。本文综述了钛硅混合氧化物的制备研究进展及其在催化有机选择氧化方面的应用, 讨论了制备方式、干燥方法、钛含量、表面修饰等影响钛硅混合氧化物性质和催化性能等的关键因素, 并展望了其应用前景。  相似文献   

9.
The understanding of the atomic-scale structural and chemical ordering in supported nanosized alloy particles is fundamental for achieving active catalysts by design. This report shows how such knowledge can be obtained by a combination of techniques including X-ray photoelectron spectroscopy and synchrotron radiation based X-ray fine structure absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis, and how the support-nanoalloy interaction influences the catalytic activity of ternary nanoalloy (platinum-nickel-cobalt) particles on three different supports: carbon, silica, and titania. The reaction of carbon monoxide with oxygen is employed as a probe to the catalytic activity. The thermochemical processing of this ternary composition, in combination with the different support materials, is demonstrated to be capable of fine-tuning the catalytic activity and stability. The support-nanoalloy interaction is shown to influence structural and chemical ordering in the nanoparticles, leading to support-tunable active sites on the nanoalloys for oxygen activation in the catalytic oxidation of carbon monoxide. A nickel/cobalt-tuned catalytic site on the surface of nanoalloy is revealed for oxygen activation, which differs from the traditional oxygen-activation sites known for oxide-supported noble metal catalysts. The discovery of such support-nanoalloy interaction-enabled oxygen-activation sites introduces a very promising strategy for designing active catalysts in heterogeneous catalysis.  相似文献   

10.
The facile synthesis of silica supported platinum nanoparticles with ultrathin titania coating to enhance metal-support interactions suitable for high temperature reactions is reported, as thermal and structure stability of metal nanoparticles is important for catalytic reactions.  相似文献   

11.
Titania‐silica immobilized Co(salen) complexes containing the heterobinuclear site were prepared by the sol–gel method for the catalytic synthesis of methyl N‐phenylcarbamate (MPC) by the oxidative carbonylation of aniline. It was found that the Ti:Si mole ratio had an important effect on the catalytic performance of Co(salen) complexes. When the Ti:Si ratio was 0.1, titania‐silica supported Co(salophen) showed the best catalytic activity. Under the reaction conditions, Co(salophen)/TS‐0.1, 0.5 g, aniline 11 mmol, methanol 25 ml, KI 2.2 mmol, CO:O2 9:1, total pressure 6 MPa, 150 °C, 3 h, the conversion of aniline and the selectivity of MPC were 60.7 and 88.1%, respectively. The XRD studies showed that titania was highly dispersed in the silica matrix. Co(salophen)/TS‐0.1 was reused five times with no significant loss of the activity, and no Co leaching was observed in the reaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Uniform sized silica and zirconia mixed titania samples were prepared in presence of a surfactant (CETAB) using controlled hydrolysis of corresponding metal alkoxides. Photocatalytic activity towards reduction of lead and cadmium metal in aqueous solution was evaluated both in UV and visible light in a 100 ml capacity reactor. In particular mixing of 10 wt% silica with titania not only increases the surface area of the material but also increases the photocatalytic activity in UV light. Whereas mixing of zirconia with titania proved to be beneficial for visible light reaction. However, addition of hole scavenger increases the activity many folds and complete removal of Pb(2+) and Cd(2+) was possible in 60 min of reaction using synthesized catalysts. Among all the organic hole scavengers used, sodium formate is found to be the most active one. Interestingly quite high metal removal (89%) is also observed in presence of visible light within 60 min of reaction. Thus the above study indicates that the presence of certain oxides in low quantity (10 wt%) with titania can facilitates the photocatalytic process selectively in UV as well as visible light.  相似文献   

13.
Wu JH  Li XS  Zhao Y  Zhang W  Guo L  Feng YQ 《Journal of chromatography. A》2011,1218(20):2944-2953
A novel core-shell composite (SiO(2)-nLPD), consisting of micrometer-sized silica spheres as a core and nanometer titania particles as a surface coating, was prepared by liquid phase deposition (LPD). Here, we show the resulting core-shell composite to have better efficient and selective enrichment for mono- and multi-phosphopeptides than commercially available TiO(2) spheres without any enhancer. The material exhibited favorable characteristics for HPLC, which include narrow pore size distribution, high surface area and pore volume. We also show that the core-shell composite can efficiently separate adenosine phosphate compounds due to the Lewis acid-base interaction between titania and phosphate group when used as HPLC packings. After coating the silica sphere with titania by LPD, the silanol of silica spheres will be shielded and that the stationary phase, C(18) bonded SiO(2)-3LPD, could be used under extreme pH condition.  相似文献   

14.
Titania on Silica. A Comparison of Sol-Gel Routes and Traditional Methods   总被引:1,自引:0,他引:1  
Titania on silica samples have been prepared by: i) precipitation-deposition from a solution of TiCl3 onto the surface of a commercial silica, and ii) base catalysed hydrolysis-condensation of TEOS followed by reaction with Ti isopropoxide. These samples were characterised by nitrogen and hydrogen adsorption, X-ray diffraction, FTIR, temperature programmed reduction, transmission electron microscopy and catalytic activity in butane-hydrogen conversion. The sol-gel preparation produced a better titania dispersion due to the formation of stabilising Ti-O-Si bonds. Upon these samples was then introduced Ir. Strong metal-support interactions between Ir and titania have been observed after high temperature reduction, causing a significantincrease in butane dehydrogenation activity relative to hydrogenolysis.It appears that using sol-gel chemistry useful supports for catalytic metals containing Si-O-Ti linkages can be produced and in future may be optimised for other metal-oxygen metal pairs.  相似文献   

15.
Activities during ethylene/1-hexene copolymerization were found to increase using the mixed titania/silica-supported MAO with rac-Et[Ind]2ZrCl2 metallocene catalyst. Energy Dispersive X-ray spectorcopy (EDX) indicated that the titania was apparently located on the outer surface of silica and acted as a spacer to anchor MAO to the silica surface. IR spectra revealed the Si-O-Ti stretching at 980 cm(-1) with low content of titania. The presence of anchored titania resulted in less steric hindrance and less interaction due to supporting effect.  相似文献   

16.
The catalytic properties of vanadia–titania catalysts and the reasons for their change in the course of durene oxidation to pyromellitic dianhydride are studied. The catalysts differ in preparation conditions and the composition of the active component film deposited on a nonporous support. The stability of the catalytic properties in the reaction medium of durene oxidation is mainly determined by the properties of titania precursors.  相似文献   

17.
Ruthenium nanoparticles supported on titania are over three times more active than conventional ruthenium on carbon for the hydrogenation of lactic acid. This superior catalytic activity can be due to a combined action of small ruthenium nanoparticles and the titania support.  相似文献   

18.
K. Tani  Y. Suzuki 《Chromatographia》1994,38(5-6):291-294
Summary A process to synthesize silica and titania as spherical packing materials has been investigated on the laboratory scale by the sol-gel method. The silica and titania obtained were tested under normal-phase separation conditions for comparison of their retention characteristics silica witha a commercial. The silica was found to be similar in its retention behaviour to the commercial silica. The titania showed basic properties and strongly retained acidic compounds.  相似文献   

19.
Titania containing catalysts were prepared by conventional procedures (coprecipitation, hydrogel kneading and titania precipitation) and a complexing-agent assisted sol-gel method. The effect of preparation methods on their properties and catalytic activities in the oxidation of olefins and decomposition of cumene hydroperoxide were examined. The sol-gel method gave the best dispersion of titania. In contrast, with the kneading and titania precipitation method, titania formed crystalline particles. The sol-gel catalysts are more effective for epoxydation of olefins because of the high dispersibility of Ti in them. However, the most active catalysts in the decomposition of cumene hydroperoxide are kneading ones.  相似文献   

20.
Poly(methylmethacrylate)/silica/titania films were prepared via a nonaqueous sol–gel route at ambient temperature, followed by spin-coating and multistep baking. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). Silicic acid and titanium(IV) chloride were used as the precursors of the inorganic component. FTIR results indicated the successful bonding between TiO2 and SiO2. TEM images suggested the silica/titania particles were well dispersed in the Poly(methyl methacrylate) (PMMA) matrix with the particles size smaller than 40 nm in our study. The refractive index and extinction coefficient were also studied. The refractive index of the hybrid increased with increasing the titania content, and the hybrid films showed high optical transparency in visible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号