首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydrogenation of ethane to ethylene in CO2 was investigated over CeO2/γ-Al2O3 catalysts at 700℃ in a conventional flow reactor operating at atmospheric pressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize the structure and surface acidity/basicity of the CeO2/γ-Al2O3 catalysts. The results show that the surface acidity decreased while the surface basicity increased after the addition of CeO2 to γ-A12O3. Accordingly, the activity of the hydrogenation reaction of CO2 increased, which might be responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highest ethane conversion obtained was about 15% for the 25%CeO2/γ-Al2O3. The selectivity to ethylene was high for all the CeO2,γ-A12O3 and CeO2/γ-Al2O3 catalysts.  相似文献   

2.
An evidence for the synergetic effect between the stacked bed of Mo/γ-Al2O3 and Ni/γ-Al2O3 in the hydrodenitrogenation (HDN) reaction of quinoline has been provided in this paper. The synergism factor decreases when the reaction temperature increases (280?340 ?C). The synergetic effect leads to improve the hydrogenation activity for the stacked bed compared with the single Mo/γ-Al2O3 bed, which may be attributed to the generation of hydrogen spillover on the Ni/γ-Al2O3 catalyst.  相似文献   

3.
Dehydrogenation of ethane to ethylene in CO2 was investigated over CeO2/γ-Al2O3 catalysts at 700℃ in a conventional flow reactor operating at atmospheric pressure. XRD, BET and microcalorimetric adsorption techniques were used to characterize the structure and surface acidity/basicity of the CeO2/γ-Al2O3 catalysts. The results show that the surface acidity decreased while the surface basicity increased after the addition of CeO2 to γ-Al2O3. Accordingly, the activity of the hydrogenation reaction of CO2 increased, which might be responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highest ethane conversion obtained was about 15% for the 25?O2/γ-Al2O3. The selectivity to ethylene was high for all the CeO2, γ-Al2O3 and CeO2/γ-Al2O3 catalysts.  相似文献   

4.
The metathesis of ethylene and 2-pentene was studied as an alternative route for propylene production over Re2O7/γ-Al2O3 and Re2O7/SiO2-Al2O3 catalysts. Both NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR) results showed that Re2O7/SiO2-Al2O3 exhibited stronger acidity and weaker metal-support interaction than Re2O7/γ-Al2O3. At 35 60℃, isomerization free metathesis was observed only over Re2O7/γ-Al2O3, suggesting that the formation of metal-carbene metathesis active sites required only weak acidity. Our results suggest that on the Re2O7/SiO2-Al2O3, hydrido-rhenium species ([Re]-H) were formed in addition to the metathesis active sites, resulting in the isomerization of the initial 1-butene product into 2-butenes. A subsequent secondary metathesis reaction between these 2-butenes and the excess ethylene could explain the enhanced yields of propylene observed. The results demonstrate the potential for high yield of propylene from alternative feedstocks.  相似文献   

5.
Dehydrogenation of ethane to ethylene in CO2 was investigated over CeO2/γ-Al2O3 catalysts at 700 ℃ in a conventional flow reactor operating at atmospheric pressure. XRD, BET and microcalorimetric adsorption techniques were used to characterize the structure and surface acidity/basicity of the CeO2/γ-Al2O3 catalysts. The results show that the surface acidity decreased while the surface basicity increased after the addition of CeO2 to γ-Al2O3. Accordingly, the activity of the hydrogenation reaction of CO2 increased, which might be responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highest ethane conversion obtained was about 15% for the 25%CeO2/γ-Al2O3. The selectivity to ethylene was high for all the CeO2, γ-Al2O3 and CeO2/γ-Al2O3 catalysts.  相似文献   

6.
0.5%Pt-K/γ-Al2O3 catalysts for the synthesis of o-phenylphenol(OPP) from o-cyclohexenyl-cyclohexanone (dimer) dehydrogenation were prepared by means of a two subsequent impregnation method. The effects of catalyst preparation parameters, such as K promoters, calcination, and reduction conditions, were investigated. The results showed that the addition of K2SO4 to Pt/γ-Al2O3 catalyst notably promoted the selectivity of OPP, and its optimum content was found to be 6% in mass fraction. The higher activity was obtained when Pt/γ-Al2O3 catalyst was calcined in nitrogen atmosphere at 400--500 ℃ and then reduced at the same temperature for 3 h in hydrogen atmosphere. The conversion of the dimer and the selectivity of OPP were always above 99% and 90%, respectively, over 0.5%Pt-6% K2SO4/γ-Al2O3 catalyst during the pilot scale test of 8000 h.  相似文献   

7.
It has been found that the catalytic activity toward the decomposition of ethanol in a fix bed reactor can be greatly improved by loading Pt on the surface of CexZr1-xO2. In this study, we have investigated the effects of different x of Pt/γ-Al2O3/CexZr1-xO2 on the catalytic activity of catalysts. The prepared catalysts were characterized by BET, XRD, and TPR. The BET surface areas of the catalysts decreased with x decreasing. XRD results reveal that deposited Pt dispersed on the CexZr1-xO2 and γ-Al2O3 matrix. The order of catalytic activities is Pt/y-Al2O3/Ce0.5Zr0.5O2>Pt/γ-Al2O3/Ce0.25Zr0.75O2>Pt/γ-Al2O2/Ce0.75Zr0.25O2>Pt/y-Al2O3/CeO2>Pt/γ-Al2O3/ZrO2. Among the catalysts, the reduction peak area of Pt/γ-Al2O3/Ce0.5Zr0.5O2 is the largest and the oxygen mobility is noticeably pro-moted, which is in good harmony with the catalytic activity. Incorporation of ZrO2 into the CeO2 lattice considerably decreases the destruction temperature for ethanol. Based on these observations, the mechanistic role of oxygen mo-bility in the oxidation reaction has been suggested.  相似文献   

8.
Different Michael addition reactions catalyzed by solid base K2O/γ-Al2O3 and KF/γ-Al2O3, MgO/γ-Al2O3 prepared by microwave irradiation method were reported in this paper. For the K2O/γ-Al2O3, not only good yield was attained but also made the reaction of Acetonitrile that usually is regarded as inactive carbonion and α, β-unsatumted compound to carry out. The yield of Michael reaction of Ethyl acetoacetate and Crotonaldehyde catalyzed by KF/γ-Al2O3, MgO/γ-Al2O3, MgO/NaY all could reach to 80% and the latter could reach to 90%. At the same time, the catalysts of different content(the ratio of load) of MgO were also applied in this reaction, and it was found that the best content of MgO was 20% ~ 25%。  相似文献   

9.
The synthesis of carbon nanotubes (CNTs) via chemical vapour deposition of methane on NiO/γ-Al2O3 catalyst has been investigated.The reduction behavior of NiO/γ-Al2O3 by methane was studied using thermogravimetric (TG) and X-ray diffraction (XRD) techniques.It was found that the NiO supported on γ-Al2O3,was reduced to Ni0 in methane atmosphere in the temperature range of 710-770℃.The catalytic activity of NiO/γ-Al2O3 for CNTs synthesis by in situ chemical vapour deposition of methane during the reduction was also investigated.Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the CNTs produced at various reduction temperatures.The results indicated that the reduction temperature exhibits obvious influence on the morphology and the yield of CNTs.CNTs with the diameter of about 20 nm were obtained at reduction temperature of 750℃,and higher reduction temperature (such as 800 and 850℃) led to an increase in CNTs diameter and a decrease in CNTs yield.  相似文献   

10.
The effect of vanadium addition to CU/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition. The influence of reaction temperature, space velocity and the molar ratio of H2 to CO2 on the performance of 12%Cu-6%V/γ-Al2O3 catalyst were also studied. The results indicated that the best conditions for reaction were as follows: 240℃, 3600 h-1 and a molar ratio of H2 to CO2 of 3:1. The results of XRD and TPR characterization demonstrated that the addition of V enhanced the dispersion of the supported CuO species, which resulted in the enhanced catalytic performance of CU-V/γ-Al2O3 binary catalyst.  相似文献   

11.
V2O5-WO3/TiO2催化剂氨法SCR脱硝反应动力学研究   总被引:7,自引:3,他引:7  
In this work, a kinetic study of the selective catalytic reduction of NO with NH3 has been carried out. After proving the operating condition that the effect of intraphase diffusion and interphase mass-transfer processes can be ignored, the selective catalytic reduction of NO with NH3 on the catalytic activity of V2O5-WO3/TiO2 has been carried out with fixing the feed gas flow rate and composition ( NO, NH3, O2 ) while varying the catalyst loading. Based on the experimental results of NO removal efficiency, the empirical catalytic reaction rate equation of NO with NH3 has been obtained using differential analysis. The experimental result is further proved by the graphic integral method at the temperature from 320℃to 400 ℃ The reaction order is 1 to NO and zero to NH3. The reaction follows the Eley-Rideal mechanism model.  相似文献   

12.
IntroductionIsobutene is the raw material for theproduction of many important chemicals.Thedehydrogenation of isobutane to isobutene oncatalysts Cr2 O3/γ- Al2 O3and Pt/γ- Al2 O3have beenextensively studied and successfully applied inindustry[1,2 ] .The dehydrogenation of isobutane to isobuteneis an endothermic reaction and is limited by thechemical equilibrium.Coke is easy formed on thecatalyst surface and the catalyst is frequentlyregenerated in the running.The oxidativedehydrogenation …  相似文献   

13.
Two types of small iron clusters supported onγ-Al2O3-RT(dehydroxylated at room temperature) andγ-Al2O3-800 (dehydroxylated at 800℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated intoγ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mossbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups ofγ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups ofγ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreducedα-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reducedα-Fe2O3.  相似文献   

14.
Chromium oxides supported on TiO2 showed good activity for the selective catalytic reduction of NO by NH3.The catalytic activity of Cr2O3-SO42-/TiO2 catalyst was greatly enhanced by the addition of SO42-into TiO2 support.The catalyst surface properties were characterized with NH3-TPD(temperature programmed desorption) and H2-TPR(temperature programmed reduction).The sulphate on the catalyst surface could enhance the acidity and redox of the catalyst obviously.The reaction mechanism on this catalyst was researched in detail by in situ diffuse reflectance Fourier transform infrared(FTIR) spectroscope.Eley-Rideal and Langmuir-Hinshelwood mechanism existed simultaneously for selective catalytic reduction(SCR) reaction of NO over Cr2O3-SO42-/TiO2 catalyst.  相似文献   

15.
Ni/α-Al2O3 catalysts were found to be active in the temperature range 600 ~ 900℃ for both CO2 reforming and partial oxidation of methane.The effects of Ni loading,reaction temperature and feed gas ratio for the combination of CO2 reforming and partial oxidation of CH4 over Ni/α-Al2O3 were investigated.Catalysts of xwt%Ni/α-Al2O3(x=2.5,5,8 and 12) were prepared by wet impregnating the calcined support with a solution of nickel nitrate.XRD patterns and activity tests have verified that the 5wt%Ni/α-Al2O3 was the most active catalyst,as compared with the other prepared catalyst samples.An increase of the Ni loading to more than 5wt% led to a reduction in the Ni dispersion.In addition,by combining the endothermic carbon dioxide reforming reaction with the exothermic partial oxidation reaction,the loss of catalyst activity with time on stream was reduced with the amount of oxygen added to the feed.  相似文献   

16.
The partial oxidation of methane to synthesis gas is studied in this paper over Ni/Al2O3 catalysts under atmospheric pressure. The effects of Ni loading on the activity and stability of catalysts with 5 mm α-Al2O3 and θ-Al2O3 pellets as supports were measured in a continuous fixed bed reactor. It is found that the optimum Ni loading is 10%. And the effect of reaction conditions on partial oxidation of methane is also studied. The methane conversion and CO selectivity increase with the increase of the reaction temperature and the space velocity on 10%Ni/α-Al2O3 catalysts. The best CH4/O2 mole ratio is 2 for CO selectivity, and the optimum space velocity is 5.4x105 h-1.  相似文献   

17.
A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800℃), methane to oxygen ratio (4 10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH:j techniques. The rise in oxygen concentration is not beneficial for the C5 selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytie system is highly potential for directly converting methane to liquid fuels.  相似文献   

18.
A series of 3. OMo/(Hβ γ-Al2O3) samples with γ-Al2O3 contents in the range of 0-100% (mass fraction) was studied by means of XRD, NH3-TPD, TPR and BET determinations for characterizing their structures. The Hβ zeolite structure in the 3.0Mo/Hβ sample can be effectively stabilized by adding some γ-Al2O3 to Hβ zeolite. γ-Al2O3 mainly favors the formation of polymolybdate or multilayered Mo oxide, while Hβ mainly forms the Al2(MoO4)3 species, as evaluated by the TPR technique. When used as the catalyst for the metathesis of butylene-2 and ethylene to propylene, there exists a close correlation between the specific surface area and stability of the catalyst. The specific surface area of the catalyst shows the maximum when (Hβ γ-Al2O3) contains 30%γ-Al2O3, which is in agreement with that of the time needed for the reaction stablization. In the case of maximum surface area, the rate of coke deposition is the minimum.  相似文献   

19.
Dimethyl ether(DME) is amongst one of the most promising alternative,renewable and clean fuels being considered as a future energy carrier.In this study,the comparative catalytic performance of the halogenated γ-Al 2 O 3 prepared from two halogen precursors(ammonium chloride and ammonium fluoride) is presented.The impact of ultrasonic irradiation was evaluated in order to optimize both the halogen precursor for the production of DME from methanol in a fixed bed reactor.The catalysts were characterized by SEM,XRD,BET and NH 3-TPD.Under reaction conditions where the temperature ranged from 200 to 400 ℃ with a WHSV = 15.9 h-1was found that the halogenated catalysts showed higher activity at all reaction temperatures.However,the halogenated alumina catalysts prepared under the effect of ultrasonic irradiation showed higher performance of γ-Al 2 O 3 for DME formation.The chlorinated γ-Al 2 O 3 catalysts showed a higher activity and selectivity for DME production than fluorinated versions.  相似文献   

20.
An extensive study of Fischer-Tropsch (FT) synthesis on cobalt nano particles supported on γ-alumina and carbon nanotubes (CNTs) catalysts is reported.20 wt% of cobalt is loaded on the supports by impregnation method.The deactivation of the two catalysts was studied at 220 C,2 MPa and 2.7 L/h feed flow rate using a fixed bed micro-reactor.The calcined fresh and used catalysts were characterized extensively and different sources of catalyst deactivation were identified.Formation of cobalt-support mixed oxides in the form of xCoO yAl2O3 and cobalt aluminates formation were the main sources of the Co/γ-Al2O3 catalyst deactivation.However sintering and cluster growth of cobalt nano particles are the main sources of the Co/CNTs catalyst deactivation.In the case of the Co/γ-Al2O3 catalyst,after 720 h on stream of continuous FT synthesis the average cobalt nano particles diameter increased from 15.9 to 18.4 nm,whereas,under the same reaction conditions the average cobalt nano particles diameter of the Co/CNTs increased from 11.2 to 17.8 nm.Although,the initial FT activity of the Co/CNTs was 26% higher than that of the Co/γ-Al2O3,the FT activity over the Co/CNTs after 720 h on stream decreased by 49% and that over the Co/γ-Al2O3 by 32%.For the Co/γ-Al2O3 catalyst 6.7% of total activity loss and for the Co/CNTs catalyst 11.6% of total activity loss cannot be recovered after regeneration of the catalyst at the same conditions of the first regeneration step.It is concluded that using CNTs as cobalt catalyst support is beneficial in carbon utilization as compared to γ-Al2O3 support,but the Co/CNTs catalyst is more susceptible for deactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号