首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We report that specific anions (of sodium salts) added to aqueous phases at molar concentrations can trigger rapid, orientational ordering transitions in water-immiscible, thermotropic liquid crystals (LCs; e.g., nematic phase of 4'-pentyl-4-cyanobiphenyl, 5CB) contacting the aqueous phases. Anions classified as chaotropic, specifically iodide, perchlorate, and thiocyanate, cause 5CB to undergo continuous, concentration-dependent transitions from planar to homeotropic (perpendicular) orientations at LC-aqueous interfaces within 20 s of addition of the anions. In contrast, anions classified as relatively more kosmotropic in nature (fluoride, sulfate, phosphate, acetate, chloride, nitrate, bromide, and chlorate) do not perturb the LC orientation from that observed without added salts (i.e., planar orientation). Surface pressure-area isotherms of Langmuir films of 5CB supported on aqueous salt solutions reveal ion-specific effects ranking in a manner similar to the LC ordering transitions. Specifically, chaotropic salts stabilized monolayers of 5CB to higher surface pressures and areal densities (12.6 mN/m at 27 ?(2)/molecule for NaClO(4)) and thus smaller molecular tilt angles (30° from the surface normal for NaClO(4)) than kosmotropic salts (5.0 mN/m at 38 ?(2)/molecule with a corresponding tilt angle of 53° for NaCl). These results and others reported herein suggest that anion-specific interactions with 5CB monolayers lead to bulk LC ordering transitions. Support for the proposition that these ion-specific interactions involve the nitrile group was obtained by using a second LC with nitrile groups (E7; ion-specific effects similar to 5CB were observed) and a third LC with fluorine-substituted aromatic groups (TL205; weak dipole and no ion-specific effects were measured). Finally, we also establish that anion-induced orientational transitions in micrometer-thick LC films involve a change in the easy axis of the LC. Overall, these results provide new insights into ionic phenomena occurring at LC-aqueous interfaces, and reveal that the long-range ordering of LC oils can amplify ion-specific interactions at these interfaces into macroscopic ordering transitions.  相似文献   

2.
Surface‐supported liquid crystals (LCs) that exhibit orientational and thus optical responses upon exposure to ppb concentrations of Cl2 gas are reported. Computations identified Mn cations as candidate surface binding sites that undergo redox‐triggered changes in the strength of binding to nitrogen‐based LCs upon exposure to Cl2 gas. Guided by these predictions, μm‐thick films of nitrile‐ or pyridine‐containing LCs were prepared on surfaces decorated with Mn2+ binding sites as perchlorate salts. Following exposure to Cl2, formation of Mn4+ (in the form of MnO2 microparticles) was confirmed and an accompanying change in the orientation and optical appearance of the supported LC films was measured. In unoptimized systems, the LC orientational transitions provided the sensitivity and response times needed for monitoring human exposure to Cl2 gas. The response was also selective to Cl2 over other oxidizing agents such as air or NO2 and other chemical targets such as organophosphonates.  相似文献   

3.
Summary Divalent nickel, cobalt and copper salts react with 2,6-diaminopyridine and acetylacetone to form complexes containing a 16-membered N6 tetradentate macrocyclic ligand. The complexes are characterised as distorted octahedra of the M(TML)X2 type where M=nickel(II), cobalt(II) and copper(II); TML=tetradentate macrocyclic ligand and X=Cl, Br, NO3 or NCS. The ligand coordinates through all the four azomethine nitrogen atoms which are bridged by acetylacetone moieties. Pyridine nitrogen does not participate in coordination, a fact supported by far i.r. studies. The magnetic, electronic and i.r. spectral studies indicate that the complexes have lower symmetries and the amounts of distortion calculated in terms of DT/DQ applying normalised spherical harmonic Hamiltonian theory indicate that these complexes are moderately distored.  相似文献   

4.
Selective complex formation in Langmuir dicetyl cyclene monolayers on the surface of aqueous solutions of Cu(II), Ni(II), and Zn(II) salts and their mixtures was studied. The effect of selectivity “inversion” of diphilic cyclene immobilized in monolayers on the surface of solutions of a mixture of copper(II) and nickel(II) salts was observed; the inversion was induced by a change in subphase pH. An analysis of the isotherms of monolayer compression and X-ray fluorescence spectra of the corresponding Langmuir-Blodgett films showed that subphase acidification caused a gradual transition from the selective formation of copper-containing macrocyclic complexes to selective complex formation between the ligand and nickel ions. The effect observed was not characteristic of complex formation with similar unsubstituted tetraamines in bulk solution. The phenomenon was interpreted from the point of view of specific conformational transitions of the diphilic macroring in the two-dimensional system organized at the interphase boundary.  相似文献   

5.
The reactions of nickel(II), copper(II), and zinc(II) acetate salts with a potentially tetradentate biphenyl-bridged bis(pyrrole-2-yl-methyleneamine) ligand yielded three complexes with different coordination geometries. X-ray crystal structural analysis reveals that in the nickel(II) complex each nickel is five-coordinate, distorted trigonal bipyramid. In the copper(II) complex, each copper is four-coordinate, between square planar and tetrahedral. In the zinc(II) complex, each zinc is four-coordinate with a distorted tetrahedral geometry and the molar ratio of the zinc and ligand is 1 : 2.  相似文献   

6.
Cobalt(II), nickel(II), copper(II), and zinc(II) trifluoromethanesulfonates form complexes with the phosphoryl ligands hexamethylphosphoric triamide, nonamethyl imidodiphosphoric tetramide, trimorpholinophosphine oxide, tributylphosphine oxide, and triphenylphosphine oxide. The compounds have been prepared by a substitution reaction using trialkyl orthoformates as dehydrating agents and were investigated with the aid of infrared and ligand-field spectroscopy. In all compounds the ligands coordinate via the phosphoryl oxygen atoms. In some complexes the trifluoromethanesulfonate anions are (semi-)coordinated to the metal ions. The coordination around the metal ions was found to be tetrahedral, square pyramidal, or octahedral depending on the particular combination of metal ion and ligand. In its coordination behaviour the CF3SO3? ion resembles the perrhenate ion.  相似文献   

7.
Pale‐green crystals of the title complex were prepared by reaction of 2‐formylpyridine semicarbazone (HCSpy) and nickel(II) perchlorate in boiling ethanol. The crystals are triclinic with the nickel ion in an octahedral arrangement, coordinated by two nitrogen atoms and one oxygen donor atom from each ligand molecule. The effect of coordination on bond lengths and angles was explored by comparison with the single‐crystal structure data of the free ligand HSCpy, which was collected as well. The assumed coordination mode was supported by 1H and 13C NMR spectroscopic data. A detailed analysis of the electronic properties, including semi‐empirical quantummechanical calculations is presented. Furthermore, the data obtained from magnetic susceptibility and EPR measurements are in accordance with a low‐spin d8 nickel(II) complex.  相似文献   

8.
X-ray crystal structure investigations of the isomorphous perchlorate salts of complexes of an A/D-seco-corrinoid ligand (I) with divalent nickel, palladium and platinum are reported. The structures determined for the Pd- and Pt-complexes are virtually superposable, that of the Ni-complex, although similar to the other two, shows significant differences with respect to metal coordination and to the spatial relationship of the A and D rings and their substituents. These similarities and differences are discussed in relation to the photochemical A/D cyclization leading to corrin complexes (II).  相似文献   

9.
The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x相似文献   

10.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.  相似文献   

11.
Al-Jabari G  Jaselskis B 《Talanta》1987,34(5):479-482
Silver(I), copper(II) and nickel(II) can be reduced to the metallic state by formaldehyde at pH 11, chromium(II) in 2.5M sulphuric acid, and borohydride at pH 5.5-6.0, respectively. Reoxidation of these metals with iron(III) in the presence of Ferrozine enables their determination at concentration below 1 mug/ml by measurement of the absorbance of the iron(II)-Ferrozine complex at 562 nm, with a precision better than 3%. The apparent molar absorptivities for silver, copper and nickel are 2.78 x 10(4), 5.56 x 10(4) and 5.58 x 10(4) l.mole(-1).cm(-1), respectively. The average thickness of silver films on glass surfaces can be determined in the way.  相似文献   

12.
Trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) molecules are used to create well-ordered Langmuir-Blodgett films containing silanol groups that interact strongly with dimethyl methylphosphonate (DMMP), a commonly used simulant for the chemical warfare agent sarin. The interaction of DMMP within multilayer POSS films is studied by uptake coefficient and temperature-programmed desorption (TPD) measurements, as well as reflection-absorption infrared spectroscopy (RAIRS). Results indicate a low uptake probability; however, in a DMMP-saturated atmosphere, the organophosphonate molecules are capable of diffusing into and adsorbing within the films. TPD and RAIRS measurements reveal no evidence of DMMP decomposition within the film. Rather, DMMP is found to desorb molecularly with a desorption energy of 122 kJ/mol. RAIRS reveals that strong hydrogen-bonding interactions between the phosphoryl groups of the organophosphonate molecules and the silanol groups of the POSS molecules are responsible for the high sorption energy of the system.  相似文献   

13.
The synthesis and characterization of a mononuclear nickel(II) complex [Ni(L(2))](ClO(4))(2) (1) and an analogous mononuclear copper(II) complex [Cu(L(2))](ClO(4))(2) (2) of a 15-membered azamacrocycle (L(2) = 3-(2-pyridyl)-6,8,8,13,13,15-hexamethyl-1,2,4,5,9,12-hexaazacyclopentadeca-5,15-diene) are reported. The macrocyclic ligand is formed during the reaction of 4,4,9,9-tetramethyl-5,8-diazadodecane-2,11-dione dihydrazone (L(1)) with pyridine-2-aldehyde (PyCHO) templated by metal ions. The X-ray crystal structure of 1 exhibits a distorted square-pyramidal coordination geometry, where the metal ion sits in the macrocyclic cavity and the pendant pyridine group of L(2) occupies the axial position. While 1 is stable in the presence of an excess of PyCHO, 2 reacts further with copper(II) salt and PyCHO to form a mononuclear copper(I) complex, [Cu(H(2)L(3))](ClO(4))(3) (3). The structure of the complex cation of 3 reveals a distorted tetrahedral coordination geometry at the copper center with a pseudo 2-fold screw axis. A two-dimensional (2D) polymeric copper(II) complex, {[Cu(2)(L(4))(2)](ClO(4))(2)}(n) (4) is obtained by reacting complex 2 (or [Ni(L(1))](ClO(4))(2)) with copper(II) perchlorate and pyridine-2-aldehyde in a methanol-water solvent mixture. Complex 4 is also obtained by treating 3 with copper(II) perchlorate and pyridine-2-aldehyde in the presence of a base. The X-ray structural analysis of 4 confirms the formation of a pyrazolate bridged dimeric copper(II) complex. The extended structure in the solid state of 4 revealed the formation of a 2D coordination polymer with the dimeric core as the repeating unit. The ligand (HL(4)) in 4 is a 3,4,5-trisubstituted pyrazole ring formed in situ via C-C bond formation and represents an unprecedented transformation reaction.  相似文献   

14.
Triammonium-N-dithiocarboxyiminodiacetate, (NH4)3L, a new dithiocarbamato derivative of iminodiacetate, has been synthesized. The coordination properties of the ligand were tested in reactions with copper(II), nickel(II) and palladium(II) salts in acidic solutions. Complexes with a general formula M(H2L)2 were obtained, with the coordination taking place through the sulfur atoms of the dithiocarbamate moiety. The new compounds were characterized by elemental analysis, UV/VIS and IR spectroscopy, thermal analysis and magnetic measurements. In addition, the ligand was characterized by 1H- and 13C-NMR spectroscopy and molar conductivity measurements. The copper(II) complex is paramagnetic, while the nickel(II) and palladium(II) compounds are diamagnetic. The thermal decomposition of all compounds is continuous and the thermal stability of the complexes is higher than that of the ligand, as expected.  相似文献   

15.
The ring opening reaction of pyromellitic dianhydride by methanol is an effective method to prepare first row transition metal dicarboxylate complexes. The reactions of different first row transition metal salts with pyromellitic dianhydride in the presence of nitrogen donating bidentate ligands such as 1,10-phenanthroline and 2,2′-bipyridine gives different compositions depending on the ligand and the metal salts used. For example, the reaction of nickel(II) acetate with pyromellitic dianhydride in the presence of 1,10-phenanthroline results in the formation of a carboxylato bridged nickel(II) metallacycle through the ring opening reaction of pyromellitic dianhydride (PAH) at the 1 and 3-positions, whereas a mononuclear tetra-aqua 2,2′-bipyridine nickel(II) complex is formed in a similar reaction of nickel(II) acetate through ring opening at the 1,4-position of PAH. Mononuclear cobalt(II) dicarboxylate complexes are formed from the ring opening reaction of pyromellitic dianhydride in methanol in the presence of the nitrogen donor ligands 1,10-phenanthroline or 2,2′-bipyridine. Copper(II) chloride on reaction with PAH and 2,2′-bipyridine gives a mononuclear complex via ring opening at the 1 and 4-positions; having chlorides inside and outside the coordination sphere. Whereas, the reaction of copper(II)acetate gives dinuclear copper complexes having a monodentate carboxylato bridge arising from the carboxylato groups at the 1 and 4-positions on the aromatic ring. The crystal structures of all the complexes have been determined.  相似文献   

16.
This paper is focused on the use of the Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) for studying thin polymer films at interfaces. When forming a polymer film on a metallic substrate, for instance by spin-coating, the characterization of the polymeric layer becomes very difficult given the small amount of matter deposited and also because of the contact with the metal. Among the techniques well adapted to surface and interface analyses, the PM-IRRAS spectroscopy represents an excellent tool to probe ultra-thin films. Different systems have been selected in this study such as polyamides (PA) and ethylene-co-vinyl acetate (EVA) nanofilms spin-coated onto chemically controlled surfaces (i.e. thiol self-assembled monloayers grafted onto gold coated glass slides). PM-IRRAS spectroscopy allowed us to characterize the polymer anisotropy (chains orientation and conformation), to suggest a model for chain organization at the polymer/substrate interface, and to calculate the orientation angles. Moreover, we were able to determine, by using PM-IRRAS, the degree of crystallinity of PA and EVA films of nanometric dimensions without any calibration procedure needed by other techniques.  相似文献   

17.
Ring opening reactions of 2,3-pyridine dicarboxylic anhydride are studied with hydrated salts of cobalt, nickel and zinc. The hydrated metal salts preferentially hydrolyze 2,3-pyridine dicarboxylic anhydride rather than causing esterification in methanol medium. Hydrolytic opening of 2,3-pyridine dicarboxylic anhydride by hydrated cobalt(II) acetate and nickel(II) acetate resulted in the corresponding chelate complexes of monodeprotonated 2,3-pyridine dicarboxylic acid. The reaction of copper acetate with pyromellitic dianhydride in the presence of 1,10-phenanthroline gives a dinuclear copper complex whereas a similar reaction with copper(II) chloride gives a mononuclear copper complex.  相似文献   

18.
The structure of the crystalline azamacrocyclic product formed by reaction of bis(propane-1,3-diamine)copper(II) perchlorate with acetone has been determined as N-rac-(6,8,8,14,16,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,13-diene)copper(II) · N-meso-(6,8,8,14,14,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,16(1)-diene)copper(II) perchlorate, with the cis, 5,16(1)-diene, and trans, 5,13-diene, isomeric cations co-crystallised. The structures of three compounds crystallised from solutions of this mixture have been determined. N-rac-(6,8,8,14,14,16-hexamethyl-1,5,9,13-tetraazacyclohexadeca-5,16(1)-diene)copper(II) tetrachlorozincate has an irregular flattened tetrahedral coordination geometry with trans-N-Cu-N angles of 139.27(8)° and 155.94(8)°. (Hexamethyl-1,5,9,13-tetraazacyclohexadecadiene)(thiocyanato-N)copper(II) perchlorate has twofold symmetrical square-pyramidal cations. A (μ-cyano)-tetracyanonickelate(II) compound has two (hexamethyl-1,5,9,13-tetraazacyclohexadecadiene)copper(II) cations each with a single axially coordinated tetracyanonickelate(II) group. The compounds, except for the tetrachlorozincate(II) salt, show disorder in the location of the imine functions and axial methyl substituents, attributed to co-crystallisation of enantiomers for the N-rac-trans isomer and/or of rotated arrangements of the N-meso-cis isomer. For the thiocyanato and tetracyanonickelato compounds this disorder precluded unambiguous assignment of configuration.  相似文献   

19.
The use of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (Tet) in chloroform solutions provides quantitative extraction of lead(II), cadmium(II), copper(II) and zinc(II) at different pH values from solutions containing perchlorate and cyclohexanecarboxylic acid. Nickel(II) and cobalt(II) ions are not extracted quantitatively. Single extractions of mixtures of copper with transition metals gave the best separations for the copper/nickel system. Separations of copper from cobalt, lead, manganese and iron were less satisfactory.  相似文献   

20.
The production of phosphoryl species (PO, PO2, HOPO) is believed to be of great importance for efficient flame‐retardant action in the gas phase. We present a detailed investigation of the thermal decomposition of dimethyl methylphosphonate (DMMP) probed by vacuum ultraviolet (VUV) synchrotron radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. This technique provides a snapshot of the thermolysis process and direct evidence of how the reactive phosphoryl species are generated during heat exposure. One of the key findings of this work is that only PO is formed in high concentration upon DMMP decomposition, whereas PO2 is absent. It can be concluded that the formation of PO2 needs an oxidative environment, which is typically the case in a real flame. Based on the identification of products such as methanol, formaldehyde, and PO, as well as the intermediates O?P?CH3, H2C?P?OH, and H2C?P(?O)H, supported by quantum chemical calculations, we were able to describe the predominant pathways that lead to active phosphoryl species during the thermal decomposition of DMMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号