首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
The thermodynamics of adsorption of amphiphilic surface-active compounds at the interface between two immiscible liquids is considered. At the interface, these molecules are supposed to replace a few of the adsorbed molecules of both solvents. Classical isotherms of adsorption (Frumkin, Frumkin-Damaskin, Langmuir, Henry) were based on the model of non-penetrable interface, where an adsorbate can substitute only molecules of one solvent. At the interface between two immiscible electrolytes, nonpolar oil/water interfaces, and liquid membranes amphiphilic molecules can substitute molecules of both solvent and classic isotherms cannot be used. The generalization of Frumkin isotherm for permeable and non-permeable interfaces, known as the Markin-Volkov isotherm, gives the possibility to analyze adsorption in a general case. The adsorption isotherms of pentafluorobenzoic acid at the octane/water interface at different pHs were measured by the drop-weight method. The thermodynamic parameters of pentafluorobenzoic acid (PFBA) adsorption at octane/water interface were determined. From the measurements of PFBA adsorption, the structure of the octane/water interface was determined. Substitution of one adsorbed octane molecule requires approximately three adsorbed PFBA molecules. This result shows that the orientation of solvent molecules at the interface is different from the bulk. Adsorbed octane molecules have a lateral orientation with respect to the interface. Gibbs free energy of adsorption equilibrium and thermodynamic parameters of PFBA adsorption show that the adsorption of PFBA at the octane/water interface is accompanied by a reduction in the attraction between adsorbed PFBA molecules as the pH decreases to the acidic region. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 10, pp. 1194–1200. The text was submitted by the authors in English.  相似文献   

2.
New Monte Carlo simulations are presented for nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent specifically investigating the roles of tail attraction and binary mixtures of different tail lengths. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate thermodynamic adsorption and surface-tension isotherms and compare results quantitatively to single-surfactant adsorption (Langmuir, 2007, 23, 1835). Surfactant tail groups with attractive interaction lead to cooperative adsorption at high surface coverage and higher maximum adsorption at the interface than those without. Moreover, adsorption and surface-tension isotherms with and without tail attraction are identical at low concentrations, deviating only near maximum coverage. Simulated binary mixtures of surfactants with differing lengths give intermediate behavior between that of the corresponding single-surfactant adsorption and surface-tension isotherms both with and without tail attraction. We successfully predict simulated mixture results with the thermodynamically consistent ideal adsorbed solution (IAS) theory for binary mixtures of unequal-sized surfactants using only the simulations from the single surfactants. Ultimately, we establish that a coarse-grained LJ surfactant system is useful for understanding actual surfactant systems when tail attraction is important and for unequal-sized mixtures of amphiphiles.  相似文献   

3.
We present Monte Carlo simulations of nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential using differing interaction parameters. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate quantitative thermodynamic adsorption and surface tension isotherms in addition to surfactant radius of gyration, tilt angles, and potentials of mean force. Surface tension simulations compared to those calculated from the simulated adsorbed amounts and the Gibbs adsorption isotherm agree confirming equilibrium in our simulations. We find that the classical Langmuir isotherm is obeyed for our LJ surfactants over the range of head and tail lengths studied. Although simulated surfactant chains in the bulk solution exhibit random orientations, surfactant chains at the interface orient roughly perpendicular and the tails elongate compared to bulk chains even in the submonolayer adsorption regime. At a critical surfactant concentration, designated as the critical aggregation concentration (CAC), we find aggregates in the solution away from the interface. At higher concentrations, simulated surface tensions remain practically constant. Using the simulated potential of mean force in the submonolayer regime and an estimate of the surfactant footprint at the CAC, we predict a priori the Langmuir adsorption constant, KL, and the maximum monolayer adsorption, Gammam. Adsorption is driven not by proclivity of the surfactant for the interface, but by the dislike of the surfactant tails for the solvent, that is by a "solvophobic" effect. Accordingly, we establish that a coarse-grained LJ surfactant system mimics well the expected equilibrium behavior of aqueous nonionic surfactants adsorbing at the air/water interface.  相似文献   

4.
In the past, few theoretical attempts have been made to describe quantitatively the adsorption of ionic surfactants at liquid interfaces. Well-known adsorption isotherms due to Frumkin or Hill–de Boer cannot respond to the specific electrostatic and geometric properties of the surfactant molecules. Our approach is based on a combination of the Gouy–Chapman theory with a modified Frumkin isotherm. The modification implies that the system is free to choose an optimal head group area and an optimal arrangement of the surfactant molecules in the interface as a function of bulk concentration. Interaction energies between neighbouring adsorbed surfactant molecules and between surfactant and water molecules are taken into consideration. The minimum of the Gibbs free energy of the system is equivalent to a minimal interfacial tension. Thus, the thermodynamically stable isotherm can be obtained as the lower envelope of the family of σ versus ln c isotherms resulting from different choices of the model parameters, including the area per molecule. According to the Gibbs equation, the Γ versus ln c adsorption isotherm is obtained as the derivative of this envelope. By variation of the model parameters, the envelope of the calculated adsorption isotherms can be fitted to experimental data of the interfacial tension versus bulk concentration. A computer program is used to calculate the σ versus c and the Γ versus ln c curves as well as to fit the parameters. Received: 28 October 1999/Accepted: 8 February 2000  相似文献   

5.
The superficial excesses determined from electrode charge measurements have been studied at constant potential or charge. The usual tests suggest a change in the orientation of the adsorbed molecule. It is shown theoretically that the Frumkin isotherm still offers an useful approximation when two adsorbed states are considered. In this case, two at least of the three adjustable parameters, the apparent adsorption energy, and the apparent molecular area, change with the electrical variable, being function of the adsorption energies for both states and also of the corresponding molecular areas. Consistent results are obtained from the consideration of isotherms using this approximation and from examination of the apparent adsorption valency.  相似文献   

6.
The photoelectrochemical, absorption and fluorescence properties of pheophytin a mono- and multilayers, deposited on optically transparent tin oxide electrodes and quartz slides were investigated. Spectra of photocurrents coincided with the absorption spectra of photosynthetic pigment in monolayers at the SnO2/solution interfaces. The anodic and cathodic photocurrents were measured at various electrode potentials. Effects of pH, electrode potentials, and concentration of redox reagents on the conversion of solar energy in monolayers on optically transparent electrodes are discussed. The absorption and fluorescence spectral characteristics, and fluorescence lifetime measurements of pheophytina in monolayers and thin films are also discussed in view of the aggregation properties of the photosynthetic pigment. The thermodynamics of adsorption of large amphiphilic compounds at the interface between two immiscible liquids is considered. The adsorption behavior of pheophytin a dissolved in different solvents is investigated. The thermodynamic parameters of pheophytin a adsorption at octane/water and benzene/water interfaces were determined.Presented at the Symposium, 76th CSC Congress, Sherbrooke, Quebec, May 30–June 3, 1993, honoring Professor Donald Patterson on the occasion of his 65th birthday.  相似文献   

7.
Adsorption of hydrophobic and hydrophilic ions at the nonpolarizable interface between two immiscible electrolyte solutions was investigated. The results were analyzed in three different models: (i) Gouy-Chapman model, (ii) ions as hard spheres, and (iii) ion pair formation at the interface. In the Gouy-Chapman model, an analytical expression for the interfacial tension was obtained. It predicts that interfacial tension should be proportional to the square root of the electrolyte concentration, which does not agree with experimental data. Modeling ions as hard spheres only slightly improves the agreement. The third model of interfacial ion pairing as the main origin of adsorption was analyzed using the amphiphilic isotherm (Markin-Volkov isotherm). A good agreement between ion-pairing theory and experimental values was achieved. The MV isotherm takes into account the limited number of adsorption sites, final size of molecules, complex formation at the interface, and interaction between adsorbed particles. The analysis revealed repulsion between adsorbed tetraalkylammonium ions at the nitrobenzene/water interface and demonstrated linear dependence between adsorption site area and the size of a molecule.  相似文献   

8.
The mechanism of water-soluble protein enrichment in continuous foam separation was studied. The liquid flow rate and the protein concentration in the foam phase were measured at various heights from the interface between the bulk liquid and foam layer, and the intrinsic values at the interface were estimated by the extrapolation method to determine the accurate adsorption density on the bubble surface. Ovalbumin (OA) and hemoglobin (HB) were used as the soluble proteins. The solution pH values were varied from 3.5 to 6.0 for OA and from 6.0 to 8.0 for HB. The experimental isotherms for OA and HB were compared to the Langmuir isotherm, and the two adsorption parameters of the equilibrium constant, K, and the saturated density, gamma, at each pH were determined. Both gamma values obtained for OA and HB showed maxima at their isoelectric point (pH 4.6 for OA and pH 6.8 for HB). Assuming that OA and HB molecules are spherical in shape and are adsorbed on the bubble surface in a close-packed structure at saturation, the calculated diameters for OA and HB molecules were quite similar to the literature values. The variation in gamma for both OA and HB is discussed qualitatively in relation to the net charge of the protein molecule. Copyright 2000 Academic Press.  相似文献   

9.
The adsorption of Cd(II) and Co(II) onto goethite was measured at five temperatures between 10 and 70 degrees C. For both cations the amount adsorbed at any given pH increased as the temperature was increased. Cd(II) adsorbed at a slightly lower pH at each temperature than Co(II). Adsorption isotherms at pH 7.00 for Cd(II) could be fitted closely by a simple Langmuir model, but a two-site Langmuir model was needed for Co(II). Potentiometric titrations of goethite suspensions in the presence and absence of added cation could be modeled closely by a constant-capacitance surface complexation model that assumed the adsorption reactions M2+ + SOH ⇋ SOM+ + H+ and M2+ + SOH + H2O ⇋ SOMOH + 2H+, where M represents Cd or Co. This model also fitted the experimental data from the adsorption edge and adsorption isotherm experiments. Thermodynamic parameters estimated from both Langmuir and surface complexation models showed that the adsorption of both metals was endothermic. Values obtained for the adsorption enthalpies from both modeling schemes were similar for both cations. Estimates of the adsorption entropies were model-dependent: Langmuir parameters yielded positive entropies, while some of the surface complexation parameters generated negative adsorption entropies. Copyright 1999 Academic Press.  相似文献   

10.
Within the framework of the Alekseev–Popov–Kolotyrkin model combined with a set of Frumkin isotherms, the adsorption of adamantanol (AdOH) molecules is studied in the presence of a surface-inactive electrolyte and chloride ions at the Hg/H2O interface. The position of points at the beginning and in the end of an equilibrium two-dimensional phase transition is shown to be determined by the equality of (a) surface tension and (b) calculated electrode potentials. With these conditions fulfilled in the phase-transition region, the model of two parallel capacitors with a common diffuse layer (in the AdOH + NaF system) transforms into the classical model of two parallel capacitors with two independent diffuse layers. Taking into account the lateral interaction between adsorbed chloride anions and AdOH molecules makes no difference to the two-dimensional phase transition potential at fixed adsorption parameters. The effect of the diffuse layer on the position of two-dimensional phase transition potentials is analyzed.  相似文献   

11.
Adsorption of nitrobenzene from aqueous solution by MCM-41   总被引:3,自引:0,他引:3  
Adsorption of nitrobenzene onto mesoporous molecular sieves (MCM-41) from aqueous solution has been investigated systematically using batch experiments in this study. Results indicate that nitrobenzene adsorption is initially rapid and the adsorption process reaches a steady state after 1 min. The adsorption isotherms are well described by the Langmuir and the Freundlich models, the former being found to provide the better fit with the experimental data. The effects of temperature, pH, ionic strength, humic acid, and the presence of solvent on adsorption processes are also examined. According to the experimental results, the amount of nitrobenzene adsorbed decreases with an increase of temperature from 278 to 308 K, pH from 1.0 to 11.0, and ionic strength from 0.001 to 0.1 mol/L. However, the amount of nitrobenzene adsorbed onto MCM-41 does not show notable difference in the presence of humic acid. The presence of organic solvent results in a decrease in nitrobenzene adsorption. The desorption process shows a reversibility of nitrobenzene adsorption onto MCM-41. Thermodynamic parameters such as Gibbs free energy are calculated from the experimental data at different temperatures. Based on the results, it suggests that the adsorption is primarily brought about by hydrophobic interaction between nitrobenzene and MCM-41 surface.  相似文献   

12.
Interfacial tensiometry and second harmonic generation (SHG) spectroscopy were applied to examine the adsorption behavior of lauric acid (LA) at a heptane/water interface. From interfacial tensiometry measurements, the adsorption kinetics of LA was revealed to be diffusion-controlled, and the adsorption constant of LA was estimated to be 9.6 x 10(4) M(-1). The adsorption isotherms obtained by SHG measurements were analyzed by taking account of both the molecular orientation of LA at the interface and a surface electric field generated by the adsorbed LA layer. It was confirmed that the carboxylic groups of adsorbed LA molecules were well ordered at the heptane/water interface and the orientation of the carboxylate group was invariant during the adsorption process.  相似文献   

13.
In this article, the adsorption of latex core-responsive polymer-shell nanoparticles at the air-water interface is investigated using a Langmuir trough. Phase transition isotherms are used to explore their responsive behavior at the interface as a function of changes in the pH of the subphase. By adjusting the pH of the water prior to particle deposition, we probe the effect of the stabilizing polymer wetting by the water subphase on the stability of these particles at the air-water interface. In addition, by initially compressing a stable film of adsorbed particles and then subsequently changing the pH of the subphase we study desorption of these particles into the water phase.  相似文献   

14.
Methylene blue and its congeners as model dyes were adsorbed onto stainless steel particles at different ionic strengths, pH values, and ethanol contents, and the adsorption mechanism was investigated. A Fourier transform infrared spectroscopy (FTIR) analysis of the dyes adsorbed on the stainless steel plate was carried out to determine the orientations of the adsorbed dyes on stainless steel surface. The adsorption isotherms for all the dyes tested were approximated by a Langmuir equation (Q=Kq(m)C/(1+KC)) in most cases except under strongly basic conditions. From the ionic strength and ethanol content dependencies of the K value in the Langmuir equations, both the electrostatic and hydrophobic interactions were indicated to contribute to the adsorption of the dyes at neutral pH. By comparing the K and q(m) values for the methylene blue congeners and with the aid of the FTIR analyses, it was found that the kind of substituent groups at most positions of the polyheterocycles of methylene blue strongly affects the adsorption behavior, particularly the area occupied by an adsorbed dye molecule, the affinity for the stainless steel surface, and the orientation of the adsorbed dye molecule on the stainless steel surface.  相似文献   

15.
Based on five thermodynamic equilibria involving solutes, solvents and adsorbents, a stoichiometric displacement adsorption model adaptable to various adsorption systems consisting of different types of solutes, solvents and adsorbents has been presented. The kernel of this model is that as the solute molecules are adsorbed by the adsorbent, a stoichiometric number of the solvent molecules is necessarily released. The model was tested with originally published data from an extensive literature. The linear parameter values from the model have been used for quantitatively explaining the phenomenon of the liquid-solid adsorption. Having compared with Langmuir model in many respects, it is found that this model is better.  相似文献   

16.
Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a high-silica beta zeolite were also compared. The amounts adsorbed were measured using a recently developed technique that accurately measures the changes in adsorbent/liquid mixture density and liquid concentration. This technique allows the adsorption of each compound in a liquid mixture to be measured. Adsorption data for binary mixtures were fit with the dual-site extended Langmuir model, and the parameters were used to predict ternary adsorption isotherms for each compound with reasonable accuracy. In ternary mixtures, acetic acid competed with ethanol and water for adsorption sites and reduced ethanol adsorption more than it reduced water adsorption.  相似文献   

17.
The adsorption of tetramethylthiourea was studied by means of differential capacity measurements. Various parameters have been obtained by back-integration. The extent of orientation of the organic molecule has been estimated from the experimental adsorption potential shift by subtracting the contribution due to adsorbed water molecules calculated according to the Bockris-Habib model. Adsorption of tetramethylthiourea has been found to obey a Frumkin isotherm with the interaction parameter depending on the electric field. A scenario is proposed where different possible orientations are suggested, depending on charge sign and coverage. Such a change in orientation has been interpreted in terms of the electronic polarization effect.  相似文献   

18.
Sum frequency vibrational spectroscopy was used to study adsorption of leucine molecules at air-water interface from solutions with different concentrations and pH values. The surface density and the orientation of the isopropyl head group of the adsorbed leucine molecules could be deduced from the measurements. It was found that the orientation depends on the surface density, but only weakly on bulk pH value at the saturated surface density. The vibrational spectra of the interfacial water molecules appeared to be strongly affected by the charge state of the adsorbed leucine molecules. Enhancement and inversion of polar orientation of interfacial water molecules by surface charges or field controllable by the bulk pH value were observed.  相似文献   

19.
Numerical calculations are carried out for potential dependences of the surface coverage and the electrode differential capacitance in the case of co-adsorption of two organic substances with different orientation of their dipole molecules in the adsorption layer. It is shown that at strong attraction of two different adsorbed molecules these dependences can be adequately described by the model of two parallel capacitors combined with simple Frumkin isotherm. The obtained results allow revisiting data on the individual adsorption of simple aliphatic molecules at ideally polarizable electrode.  相似文献   

20.
In the article, the dynamic surface tension of sodium lignosulfonate (SL) aqueous solutions are investigated using an axisymmetric drop shape analysis-profile method. The data are analyzed by the Langmuir, Frumkin, modified Frumkin, and modified Flory-Huggins equations. The results indicate that the Langmuir model's results with two adjustable parameters are comparable to that of other models with three or four adjustable parameters. Based on the simplicity of simulation, the Langmuir adsorption equation is used to correlate the dynamic adsorption processing. The aggregation between SL molecules and the variation of adsorption configuration are proposed to interpret the results of dynamic surface tension.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号