首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荧光材料基质的结构调制对于调控发光材料的发光性能,探索固体结构-性能关系具有重要的研究意义。本文以Y2SiO5基质为模型,分别利用Si/Al和Si/P取代,以[AlO4]和[PO4]四面体替换[SiO4]四面体,设计合成了一系列组成为Y1.95Si1-xAlxO5-xFx∶0.05Ce3+(x=0.05,x=0.1,x=0.2,x=0.4,x=1)和Y1.95-yCaySi1-yPyO5∶0.05Ce3+(y=0,y=0.02,y=0.04,y=0.06,y=0.08,y=0.2)的荧光材料。结合X射线衍射、荧光光谱、荧光寿命等测试手段对其进行了表征分析。结果表明,在x≤0.2,y≤0.04时得到的产物能够保持Y2SiO5的结构特征,在一定的基质组成替换范围内,设计合成的样品Y1.95Si1-xAlxO5-xFx∶0.05Ce3+、Y1.95-yCaySi1-yPyO5∶0.05Ce3+能提高发光强度,发射光谱呈现蓝移现象。荧光寿命测试表明这两个系列的化合物中Ce3+所处的基质环境变化较小,Ce3+发光也未产生较大的变化。  相似文献   

2.
The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb5Bi3Hx and Sm5Bi3H∼1 and of powder neutron diffraction data for Ca5Bi3D0.93(3) are reported. These confirm that all three crystallize with the heavy atom structure type of β-Yb5Sb3, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca5Sb3F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn5Si3-type product plus H2. Some contradictions in the literature regarding Yb5Sb3 and Yb5Sb3Hx phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.  相似文献   

3.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

4.
Synthesis conditions, crystal structures, and magnetic properties of quasi-one-dimensional complex oxides Ca3CuMnO6 (space group P-1, z=4, triclinic cell) and Ca3Co1+xMn1−xO6 with x=0, 0.25, 1.0 (structural type K4CdCl6, space group R-3c, z=6) are presented. The crystal structures of Ca3CoMnO6 and Ca3CuMnO6 were refined using neutron and combined X-ray and neutron diffraction analysis, respectively. The interatomic distances in oxygen polyhedra were found. In contrast to ferromagnetic Ca3Co2O6 (Tc=24 K), manganese-containing phases Ca3Co1+xMn1−xO6 are characterized by antiferromagnetic interactions with Neel temperatures 18 K (x=0.25) and 13 K (x=0). For Ca3CuMnO6TN was established to be 6 K.  相似文献   

5.
The thermal evolution and structural properties of fluorite-related δ-Bi2O3-type Bi9ReO17 were studied with variable temperature neutron powder diffraction, synchrotron X-ray powder diffraction and electron diffraction. The thermodynamically stable room-temperature crystal structure is monoclinic P21/c, a=9.89917(5), b=19.70356(10), c=11.61597(6) Å, β=125.302(2)° (Rp=3.51%, wRp=3.60%) and features clusters of ReO4 tetrahedra embedded in a distorted Bi–O fluorite-like network. This phase is stable up to 725 °C whereupon it transforms to a disordered δ-Bi2O3-like phase, which was modeled with δ-Bi2O3 in cubic Fmm with a=5.7809(1) Å (Rp=2.49%, wRp=2.44%) at 750 °C. Quenching from above 725 °C leads to a different phase, the structure of which has not been solved but appears on the basis of spectroscopic evidence to contain both ReO4 tetrahedra and ReO6 octahedra.  相似文献   

6.
TlPd3 was synthesised from the elements in evacuated silica tubes at 600 °C. Alternatively, TlPd3 was yielded by reduction of TlPd3O4 in N2 gas atmosphere. Reduction of the oxide in H2 gas atmosphere resulted in the formation of the new hydride TlPd3H. The structure of tetragonal TlPd3 (ZrAl3 type, space group I4/mmm, a = 410.659(9) pm, c = 1530.28(4) pm) was reinvestigated by X‐ray and also by neutron powder diffraction as well as the structure of its previously unknown hydride TlPd3H (cubic anti‐perovskite type structure, space group Pm\bar{3} m, a = 406.313(1) pm). In situ DSC measurements of TlPd3 in hydrogen gas atmosphere showed a broad exothermic signal over a wide temperature range with two maxima at 280 °C and at 370 °C, which resulted in the product TlPd3H. A dependency of lattice parameters of the intermetallic phase on reaction conditions is observed and discussed. Results of hydrogenation experiments at room temperature with gas pressures up to 280 bar hydrogen and at elevated temperatures with very low hydrogen gas pressures (1–2 bar) as well as results of dehydrogenation of the hydrides under vacuum will be discussed.  相似文献   

7.
Dy5Ni0.66Bi2.34 and Lu5Ni0.56Sb2.44 were synthesized by arc-melting and were found to adopt an orthorhombic Yb5Sb3-type structure. Cell parameters are a = 12.075(2), b = 9.165(2), c = 8.072(1) Å for Dy5Ni0.66Bi2.34 and a = 11.6187(9), b = 8.933(1) and c = 7.8377(6) Å for Lu5Ni0.56Sb2.44. Dy5Ni0.66Bi2.34 undergoes a step-like ferromagnetic transition around 66 K. Magnetocaloric effect in terms of the magnetic entropy change, ΔS, reaches −3.73 J/kg K at 75 K for Dy5Ni0.66Bi2.34.  相似文献   

8.
The crystal structure of Ca5Te3O14 at room temperature was studied by the Rietveld method using combined X-ray and neutron powder diffraction data. The compound crystallizes in the space group Cmca with the lattice parameters a=10.4268(2) Å, b=10.3908(2) Å and c=10.4702(2) Å. The structure of Ca5Te3O14 is chiolite-like and consists of a framework of corner-linked TeO6 octahedral layers in which a linear TeO2 group of every fourth octahedron is substituted by a Ca atom. This type of structure was previously observed in BaSr4U3O14. The relationship between the chiolite-like structure and the fluorite structure is discussed.  相似文献   

9.
Details of quaternary compounds formation in the system NaF–CaF2–AlF3 are specified. To achieve this aim, the samples of phases NaCaAlF6 and Na2Ca3Al2F14 have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 °C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF2–NaAlF4, where at T=745–750 °C invariant equilibrium is implemented with the phases CaF2–NaCaAlF6–Na2Ca3Al2F14–(liquid melt)–(NaAlF4). The peculiarity of the equilibrium is NaAlF4 metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na2Ca3Al2F14 is stable and NaCaAlF6 above this temperature. The phase NaCaAlF6 fixed by rapid quenching from high temperatures and when heated up to 640 °C decomposes, yielding Na2Ca3Al2F14. Further heating in vacuum at temperature up to 740 °C results in decomposition of Na2Ca3Al2F14 into CaF2 and Na3AlF6. The expected reverse transformation of Na2Ca3Al2F14 into NaCaAlF6 has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases.

Synopsis

Thermal transformation of the quaternary compounds in system (NaF–CaF2–AlF3) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF2–NaCaAlF6–Na2Ca3Al2F14–(liquid melt)–(NaAlF4) at T=745–750 °C.  相似文献   

10.
The Gd5Si2.75P1.25 phase with all interslab Si/P–Si/P dimers broken (Sm5Ge4-type structure) undergoes a ferromagnetic transition at 184 K. For this phase, the magnetocaloric effect in terms of the magnetic entropy change, ΔS, reaches the maximum value of −7.8 J/kg K at 177 K. Absence of a temperature-dependant structural transition, as confirmed by the low-temperature single crystal diffraction studies, together with the moderate value of ΔS points to the presence of a conventional magnetocaloric effect. Gd5Si3.5P0.5 and Gd5Si3.25P0.75, which are composites of the Gd5Si4- (all Si/P–Si/P dimers intact) and Sm5Ge4-type phases, possess two magnetic transitions associated with the two-phases. Introduction of P into Gd5Si4 lowers the Curie temperature from 336 K to 332 K in Gd5Si3.25P0.75.  相似文献   

11.
12.
The double phosphate Ca9Eu(PO4)7, obtained by solid state reaction, was found to be isotypic with Ca3(PO4)2, with space group R3c and unit cell parameters a=10.4546(1) Å, c=37.4050(3) Å, V=3540.67(9) Å3, Z=6. The structure parameters refined using the Rietveld method showed that europium shares positions M1, M2 and M3 with calcium, contradicting previously published Mössbauer results. Low temperature luminescence under selective excitation of Eu3+ in Ca9Y1−xEux(PO4)7 and in Ca9Eu(PO4)7 samples was studied, confirming the Eu3+ distribution into these sites. At 10 K, 5D07F0 emission lines of Eu3+ were observed at 578.5, 579.5, 580.1 nm for the M3, M1 and M2 sites, respectively. High temperature X-ray powder diffraction evidenced a second-order phase transition around 573 °C.  相似文献   

13.
The β, β′, γ and α phases of LiFeO2, synthesized as powders, were annealed at different temperatures and characterized by X-ray measurements. The β′ and γ modifications were also studied by time-of-flight neutron diffraction (ISIS Facility, UK). The structure of the β′ phase was refined in the monoclinic C2/c space group (a=8.566(1), b=11.574(2), c=5.1970(5) Å, β=146.064(5)°) to wRp=0.071–0.080 (data from four counter banks). Fe and Li atoms are ordered over two of the four independent sites, and partially disordered over the other two. The ordered Li has a distorted tetrahedral coordination. The γ structure was refined at RT (a=4.047(1), c=8.746(2) Å) and at 570 °C (a=4.082(3), c=8.822(6) Å) in the I41/amd symmetry, showing full order with Li in octahedral coordination at RT, and in a split-atom configuration at high temperature. On annealing, the β′ polymorph was found to transform to γ at 550 °C, thus suggesting that it is a metastable phase. Electrostatics is discussed as the driving force for the αβ′→γ ordering process of LiFeO2.  相似文献   

14.
Hydrogen sorption properties and some corresponding changes in the crystallization of amorphous TM33Zr67 (TM=Fe, Co, Ni) alloys have been investigated. Relatively large amount of hydrogen was found to dissolve into the amorphous alloys during electrochemical hydrogen charging. The microstructural evolution during annealing of H-charged Ni33Zr67 was studied as well. The weaker bonded hydrogen desorbs in a large temperature range (440–625 K) before the crystallization of the amorphous alloys to start. A hydride phase (ZrH2) was found to form during annealing the H-charged amorphous Ni33Zr67 alloy. During heating at constant heating rate the hydride decomposes at about 715 K and formation of Zr2Ni immediately takes place. The final microstructure of the Zr2Ni, crystallized from the H-charged matrix, is noticeably finer compared to the material crystallized from the H-free amorphous alloy, most probably due to the higher temperature of Zr2Ni formation in the H-charged amorphous alloy than in the H-free sample.  相似文献   

15.
Cu3(OH)4SO4, obtained by hydrothermal synthesis from copper sulfate and soda in aqueous medium, is isostructural with the corresponding antlerite mineral, orthorhombic, space group Pnma (62), with a=8.289(1) b=6.079(1) and c=12.057(1) Å, V=607.5(2) Å3, Z=4. Its crystalline structure has been refined from X-ray single crystal and powder neutron diffraction data at room temperature. It consists of copper (II) triple chains, running in the b-axis direction and connected to each other by sulfate groups. The magnetic structure, solved from powder neutron diffraction data at 1.4 K below the transition at 5 K evidenced by susceptibility and specific measurements, reveals that, inside a triple chain, the magnetic moments of the copper ions (μB=0.88(5) at 1.4 K) belonging to outer chains are oriented along the c-axis of the nuclear cell, with ferromagnetic order inside a chain and antiferromagnetic order between the two outer chains. No long-range magnetic order is obtained along the central chain with an idle spin behavior.  相似文献   

16.
Temperature-dependent, single crystal and powder X-ray diffraction studies as well as magnetization, and heat capacity measurements were carried out on two phases of the Gd5GaxGe4−x system: for x=0.7 and 1.0. Gd5Ga0.7Ge3.3 shows three structure types as a function of temperature: (i) from 165 K to room temperature, the orthorhombic Sm5Ge4-type structure exists; (ii) below 150 K, it transforms to a orthorhombic Gd5Si4-type structure; and (iii) a monoclinic Gd5Si2Ge2-type component is observed for the intermediate temperature range of 150 K≤T≤165 K. This is the first time that all these three structure types have been observed for the same composition. For Gd5Ga1.0Ge3.0, the room temperature phase belongs to the orthorhombic Pu5Rh4-type structure with interslab contacts between main group atoms of 2.837(4) Å. Upon heating above 523 K, it transforms to a Gd5Si4-type structure with this distance decreasing to 2.521(7) Å before decomposing above 573 K.  相似文献   

17.
The reaction pathway for the Ca3Al2O6 formation up to 1300°C, from mechanochemically treated mixtures of amorphous aluminum hydroxide and CaCO3, was studied in situ by differential thermal analysis, constant heating rate dilatometry and time-resolved neutron powder diffraction. The experiment was carried out, in an open system, on a sample with the nominal Ca3Al2O6 stoichiometry. The results obtained by neutron diffractometry and thermal analysis were in good agreement with the data obtained by scanning electron microscopy and X-ray diffraction on heat-treated and-quenched samples. The synthesis path implied the formation of cryptocrystalline Al2O3, crystalline CaO, CaAl2O4 and Ca12Al14O33 as transitory phases. Finally the nucleation and growth of the single phase Ca3Al2O6 took place at 1300°C and exhibited porous structure due to CO2 and H2O release.  相似文献   

18.
The new mixed oxide having composition close to Ca7Co3Ga5O18 was synthesized from CaCO3, Co3O4 and Ga2O3 at 1150 °C in air and studied by neutron and synchrotron X-ray powder diffraction, selected-area electron diffraction and high-resolution electron microscopy. The structure was refined, using time-of-flight (TOF) neutron powder diffraction data, in space group F432, with and Z=8, to RF=0.7%. It is considerably disordered, with four different tetrahedral sites randomly occupied by Co and Ga atoms at a ratio of 1:2. The tetrahedra form a disordered (Co1/3Ga2/3)O2 3D-framework inside which isolated CoO6 octahedra, surrounded by 8 Ca atoms, are located. The structure is related to the ordered structure of Ca14Al10Zn6O35. Electron diffraction patterns confirmed the symmetry and unit cell and revealed no diffuse scattering. High-resolution electron microscopy images showed the absence of extended structural defects.  相似文献   

19.
Phase equilibrium in the pseudo-quaternary system K2O–MoO3–P2O5–Bi2O3 was studied as three-component solvent K2MoO4–KPO3–MoO3 containing 15 mol% Bi2O3 during slow cooling and spontaneous crystallization. The results of the investigation were shown on a composition diagram, which indicates the crystallization fields of K2Bi(PO4)(MoO4), K5Bi(MoO4)4, BiPO4 and K3Bi5(PO4)6. New phosphate K3Bi5(PO4)6 was characterized by single-crystal X-ray diffraction (space group C2/c, a=17.680(4), b=6.9370(14), c=18.700(4) Å, β=113.79(3)°) and FTIR spectroscopy. The possibility of lone electron pair stereoactivity of bismuth was suggested using the calculations of characteristics of the Voronoi–Dirichlet polyhedra for K3Bi5(PO4)6 and K2Bi(PO4)(MoO4).  相似文献   

20.
A series of binary rare-earth metal silicides RE5Si3 and ternary boron-interstitial phases RE5Si3Bx (RE=Gd, Dy, Ho, Lu, and Y) adopting the Mn5Si3-type structure, have been prepared from the elemental components by arc melting. Boron “stuffed” phases were subsequently heated at 1750 K within a high-frequency furnace. Crystal structures were determined for both binary and ternary series of compounds from single-crystal X-ray data: hexagonal symmetry, space group P63/mcm, Z=2. Boron insertion in the host binary silicides results in a very small decrease of the unit cell parameters with respect to those of the binaries. According to X-ray data, partial or nearly full boron occupancy of the interstitial octahedral sites in the range 0.6-1 is found. The magnetic properties of these compounds were characterized by the onset of magnetic ordering below 100 K. Boron insertion induces a modification of the transition temperature and θp values in most of the antiferromagnetic binary silicides, with the exception of the ternary phase Er5Si3Bx which was found to undergo a ferromagnetic transition at 14 K. The electrical resistivities for all binary silicides and ternary boron-interstitial phases resemble the temperature dependence of metals, with characteristic changes of slope in the resistivity curves due to the reduced electron scattering in the magnetically ordered states. Zintl-Klemm concept would predict a limiting composition RE5Si3B0.6 for a valence compound and should then preclude the stoichiometric formula RE5Si3B. Density functional theory calculations carried out on some RE5Si3Zx systems for different interstitial heteroatoms Z and different x contents from 0 to 1 give some support to this statement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号