首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Cell cultures established from plants represent an attractive alternative to whole plants for effective production of bioactive secondary metabolites. Cell culture from Vitis vinifera L. cv. Gamay Fréaux accumulated high amounts of hydroxycinnamic acid derivatives and anthocyanins. Two new compounds were identified: 3-O-glucosylresveratrol, a stilbene derivative, abundant in cell suspension culture, and a hydroxyphenol, 4-(3,5-dihydroxyphenyl)-phenol, abundant in callus culture. The major anthocyanin monoglucosides present in cell suspension culture were cyanidin 3-O-glucoside and peonidin 3-O-glucoside, and the major cinnamoyl derivatives were cyanidin 3-O-p-coumaryl glucoside and peonidin 3-O-p-coumaryl glucoside. Three minor anthocyanin compounds were found in V. vinifera cell culture: delphinidin 3-O-glucoside, petunidin 3-O-glucoside, and delphinidin 3-O-p-coumaryl glucoside. Anthocyanin levels of cell suspension cultures increased significantly—about eight fold—after 4-day cultivation in new medium. Salicylic acid at a concentration of 50 μM did not enhance anthocyanin accumulation in cell suspension culture, and similar levels of jasmonic acid significantly reduced the anthocyanin content.  相似文献   

2.
A breeding program to produce new grape varieties tolerant to main vine fungal pathogens (Plasmopara viticola and Erysiphe necator) is carrying out by crossing Vitis vinifera cv. “Glera” with resistant genotypes such as “Solaris,” “Bronner,” and “Kunleany.” Firstly, resistance gene-based markers analyses allowed the identification of five genotypes, which have inherited the resistance loci against mildews. To select those that also inherited the phenotype as close as possible to ‘Glera’ suitable to be introduced in the Prosecco wine production protocols, the grape glycosidic derivatives were studied by UHPLC/QTOF mass spectrometry. Targeted identification of the metabolites was performed using a database expressly constructed by including the glycosidic volatile precursors previously identified in grape and wine. A total of 77 glycosidic derivatives including many aroma precursors and some variety markers, were identified. Original resistant genotypes had distinct metabolomic profiles and different to ‘Glera’, while the crossings showed varying similarity degrees to V. vinifera parent. Findings demonstrated the Glera × Bronner and Glera × Solaris crossings are more suitable to produce high-sustainable Prosecco wines. Coupling of glycosidic volatile precursors profiling to multivariate statistical analysis was effective for phenotypic characterization of grapes and to evaluate their enological potential.  相似文献   

3.
A new and facile synthesis of O2PtF6 is reported without the demanding synthesis of PtF6 or the use of high pressure fluorination in the presence of oxygen. The O2PtF6 is obtained in form of single crystals by direct Klemm‐type fluorination of commercially available PtO2 · xH2O in a stream of diluted F2 of atmospheric pressure at a temperature of 275 °C. Its identity and purity was evidenced by powder X‐ray diffraction, Raman and infrared spectroscopy. The synthesis allows the preparation of pure dioxygenyl hexafluoridoplatinate(V). The new synthesis of O2PtF6 is deemed more convenient than those that require the extremely reactive PtF6.  相似文献   

4.
This work reports the elusive structural evidence for the [4]pseudorotaxane of β‐cyclodextrin (β‐CD) with coffee chlorogenic acid (CGA), a conjugate of caffeic acid (CFA) and quinic acid (QNA). A single‐crystal X‐ray structure analysis of the inclusion complex β‐cyclodextrin–chlorogenic acid–water (2/2/17), 2C42H70O35·2C16H18O9·17H2O, reveals that CGA threads through β‐CD and assembles via O—H…O hydrogen bonds and parallel‐displaced π–π interactions in the twofold symmetry‐related dimer yielding a [4]pseudorotaxane, which is crystallographically observed for the first time in CD inclusion complexes. The encapsulation of the aromatic ring and C=C—C(=O)O chain in the β‐CD dimeric cavity indicates that the CFA moiety plays a determinant role in complexation. This is in agreement with the DFT‐derived relative thermodynamic stabilities of the trimodal β‐CD–CGA inclusion complexes, that is, β‐CD complexed with different CGA components: C=C—C(=O)O chain > cyclohexane ring > aromatic ring. The complexation stability is further enhanced in the dimeric β‐CD–CGA complex, with the CFA moiety totally enclosed in the β‐CD dimeric cavity.  相似文献   

5.
《Solid State Sciences》1999,1(5):287-300
The local structure around silver atoms in the crystalline and glassy forms of AgBaP3O9 and AgPO3 has been investigated using Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). The results are reported at the silver K-edge. The structure of AgBaP3O9 is representative of isolated silver whereas silver pairs have been evidenced in crystalline AgPO3. The present investigation allows to detect the formation of Ag+-Ag+ pairs in both glasses. These data arc consistent with crystal chemistry of silver phosphates and the luminescent properties of these materials.  相似文献   

6.
Substances crystallizing under various conditions from the MVO3(MF, HF)H2O2H2O (M = NH4, K) systems have been characterized by elemental analysis, infrared and Raman spectra and X-ray powder patterns. Besides the known M2[VO(O2)2F] complexes, complexes of two new types have been obtained: M3[HV2O2(O2)3F4·2H2O and (NH4)3[V2O2(O2)4F]·nH2O (n≈2). Vibrational spectra of new complexes are consistent with the presence of dimeric anions containing V(μ2O2)V and VFV bridges, respectively.  相似文献   

7.
The innovative strategy of using nanoparticles in radiotherapy has become an exciting topic due to the possibility of simultaneously improving local efficiency of radiation in tumors and real-time monitoring of the delivered doses. Yttrium oxide (Y2O3) nanoparticles (NPs) are used in material science to prepare phosphors for various applications including X-ray induced photodynamic therapy and in situ nano-dosimetry, but few available reports only addressed the effect induced in cells by combined exposure to different doses of superficial X-ray radiation and nanoparticles. Herein, we analyzed changes induced in melanoma cells by exposure to different doses of X-ray radiation and various concentrations of Y2O3 NPs. By evaluation of cell mitochondrial activity and production of intracellular reactive oxygen species (ROS), we estimated that 2, 4, and 6 Gy X-ray radiation doses are visibly altering the cells by inducing ROS production with increasing the dose while at 6 Gy the mitochondrial activity is also affected. Separately, high-concentrated solutions of 25, 50, and 100 µg/mL Y2O3 NPs were also found to affect the cells by inducing ROS production with the increase of concentration. Additionally, the colony-forming units assay evidenced a rather synergic effect of NPs and radiation. By adding the NPs to cells before irradiation, a decrease of the number of proliferating cell colonies was observed with increase of X-ray dose. DNA damage was evidenced by quantifying the γ-H2AX foci for cells treated with Y2O3 NPs and exposed to superficial X-ray radiation. Proteomic profile confirmed that a combined effect of 50 µg/mL Y2O3 NPs and 6 Gy X-ray dose induced mitochondria alterations and DNA changes in melanoma cells.  相似文献   

8.
At near neutral pH (approx. 5.5), the OH-adduct of chlorogenic acid (CGA), formed on pulse radiolysis of N2O-saturated aqueous CGA solutions (λ max = 400 and 450 nm) with k = 9 × 109 dm3 mol−1 s−1, rapidly eliminates water (k = 1 × 103 s−1) to give a resonance-stabilized phenoxyl type of radical. Oxygen rapidly adds to the OH-adduct of CGA (pH 5.5) to form a peroxyl type of radical (k = 6 × 107 dm3 mol−1 s−1). At pH 10.5, where both the hydroxyl groups of CGA are deprotonated, the rate of reaction of · OH radicals with CGA was essentially the same as at pH 5.5, although there was a marked shift in the absorption maximum to approx. 500 nm. The CGA phenoxyl radical formed with more specific one-electron oxidants, viz., Br 2 ·− and N 3 · radicals show an absorption maximum at 385 and 500 nm, k ranging from 1–5.5 × 109 dm3 mol−1 s−1. Reactions of other one-electron oxidants, viz., NO 2 · , NO· and CCl3OO· radicals, are also discussed. Repair rates of thymidine, cytidine and guanosine radicals generated pulse radiolytically at pH 9.5 by CGA are in the range of (0.7–3) × 109 dm3 mol−1 s−1.  相似文献   

9.
Cell parameter evolution versus temperature has been established for both V2O5 and MoO3, from 15 to 953 and 893 K, respectively. Both oxides preserve their orthorhombic crystal system and their respective space groups Pmmn and Pnma in the whole temperature range. Unusual evolution of the unit cells have been detected in these oxides and proposals are made to follow them based on detailed structural analysis. Three temperature domains have been evidenced for V2O5 marked by breaks at RT and 800 K; for MoO3, only two domains are defined below and above 400 K. For each domain the quality of cell parameters and X-ray powder pattern indexing, have been checked by mathematical functions to buttress their coherent evolution within each temperature domain.  相似文献   

10.

A facile green synthesis of platinum nanoparticles (PtNPs) using chlorogenic acid (CGA) as a reducing agent and stabilizing agent has been reported here for the first time to the knowledge of the authors. Well-dispersed PtNPs are synthesized in spherical shapes and are tuned in size by simply changing the molar ratio of H2PtCl6 to CGA, with the same salt, temperature and solvent. The average sizes of the particles were 16.9 ± 4.7, 13.3 ± 4.0, 10.8 ± 3.4, and 7.5 ± 2.3 nm, respectively, corresponding to molar ratios of the initial H2PtCl6/CGA of 1:1, 1:2, 1:3 and 1:4 and decreased with an increase in CGA concentration. Transmission electron microscope; energy-dispersive spectrometer; UV–visible absorption spectra (UV–Vis); and Fourier transmission infrared spectra were used to characterize the PtNPs. Additionally, the advantage of CGA for possible synergistic biological activity was studied through the in vitro antioxidant activity of PtNPs by CGA for capture of free radicals. Our results indicate that CGA is an excellent reducing and stabilizing agent in green synthesis of PtNPs, and these size-tunable PtNPs can provide potential applications in the field of biomedicines.

Graphic abstract
  相似文献   

11.
A study of the oxygen reduction reaction (ORR) on a screen printed carbon electrode surface mediated by the tricopper cluster complex Cu3(7‐N‐Etppz(CH2OH)) dispersed on electrochemically reduced carbon black, where 7‐N‐Etppz(CH2OH) is the ligand 3,3′‐(6‐(hydroxymethyl)‐1,4‐diazepane‐1,4‐diyl)bis(1‐(4‐ethyl piperazin‐1‐yl)propan‐2‐ol), is described. Onset oxygen reduction potentials of about 0.92 V and about 0.77 V are observed at pH 13 and pH 7 vs. the reversible hydrogen electrode, which are comparable to the best values reported for any synthetic copper complex. Based on half‐wave potentials (E1/2), the corresponding overpotentials are about 0.42 V and about 0.68 V, respectively. Kinetic studies indicate that the trinuclear copper catalyst can accomplish the 4 e? reduction of O2 efficiently and the ORR is accompanied by the production of only small amounts of H2O2. The involvement of the copper triad in the O2 activation process is also verified.  相似文献   

12.
The title compound, aqua­[bis­(salicyl­idene)­ethyl­enediamin­ato-O,N,N′,O′]­oxovanadium(V) nitrate, [VO(C16H14N2O2)(H2O)]NO3, crystallizes as two polymorphs in the triclinic and monoclinic crystal systems. In both, the V atom has a distorted octahedral coordination geometry with a long V—Owater bond trans to V=O. The coordinated water mol­ecules are hydrogen bonded to the nitrate ions so that pairs of cations are linked to give neutral centrosymmetric dimers. The V=O and V—Owater distances are 1.598 (2) and 2.257 (2) Å, respectively, in the triclinic form, and 1.588 (3) and 2.230 (3) Å, respectively, in the monoclinic form. In the triclinic form, the dimers pack so that the salen [bis(salicyl­idene)ethylenediaminate] ligands are parallel to each other, whereas in the monoclinic form, which is the denser, there is a herring-bone arrangement.  相似文献   

13.
The chlorogenic acid (CGA) surface-imprinted magnetic polymer nanoparticles have been prepared via water-in-oil-in-water multiple emulsions suspension polymerization. This kind of molecularly imprinted polymer nanoparticles (MIPs) had the core-shell structure with the size of about 50 nm. Magnetic susceptibility was given by the successful encapsulation of Fe3O4 nanoparticles with a high encapsulation efficiency of 19.3 wt%. MIPs showed an excellent recognition and selection properties for the imprinted molecule CGA. The recognition capacity of MIPs was near three times than that of non-imprinted polymer nanoparticles (NIPs). Compared with the competitive molecule caffeic acid (CFA), the selectivity of MIPs for CGA was 6.06 times as high as that of NIPs. MIPs could be reused and regenerated, and their rebinding amount in the fifth use was up to 78.85% of that in the first use. The MIPs prepared were successfully applied to the separation of CGA from the extract of Traditional Chinese Medicine Honeysuckle.  相似文献   

14.
Ozonolyses of 1,1,2,2‐tetraphenylethene (TPE, 1 ) have been described many times in the literature, but the reports are contradictory. This reaction is particularly important for understanding the mechanism of alkene ozonolysis, in view of possible stabilization of reactive intermediates by aryl groups. Thus, systematic investigations of ozonolysis in both aprotic solvents and in protic solvents are reported here. Attention is directed to the following details that have been underestimated in the past: i) the actual electronic structure of ground‐state ozone (O3), ii) differentiation between strained and unstrained alkenes, iii) the significance of both the O3 concentration and the TPE concentration, iv) the influence of various solvents, including pyridine, v) the influence of the reaction temperature, vi) the role of electron‐transfer catalysis (ETC) and, vii) the effect of structural modifications. Our results suggest that ozonolysis of TPE ( 1 ) does not include a 1,3‐dipolar reaction step, but represents a particularly interesting example of electron‐donor (TPE)/electron‐acceptor (O3) redox chemistry. The present investigations include several crucial results. First, pure 3,3,6,6‐tetraphenyltetroxane ( 3 , m.p. 221° (dec.)) and pure tetraphenylethylene ozonide ( 4 , m.p. 153° (dec.)) are prepared for the first time, although 3 and 4 have long been known. Second, the singlet diradical character of O3, lessened by means of hypervalent‐electron interaction and predicted by different calculations, is evidenced via reaction with the spin‐trap galvinoxyl (2,6‐bis(1,1‐dimethylethyl)‐4‐{[3,5‐bis(1,1‐dimethylethyl)‐4‐oxocyclohexa‐2,5‐dien‐1‐ylidene]methyl}phenoxy; 8 ), and the zwitterionic reaction behavior of ground‐state O3 is ruled out. Third, the electron‐acceptor ability of O3 is evidenced by reactions with suitable tetraaryl ethylenes: it is enhanced by addition of catalytic amounts of protons or Lewis acids. Fourth, the observed distribution of the O3 O‐atoms to the two different olefinic C‐atoms of the unsymmetric alkene 27b is in full agreement with an initial single‐electron transfer (SET) step, followed by a radical mono‐oxygenation to cause the crucial C,C cleavage. Final dioxygenation should lead to the generally known products (ozonides, tetroxanes, hydroperoxides). The regioselectivity is found to be inconsistent with the expected decay of an intermediate primary ozonide. Finally, the treatment of 1,2‐bis(4‐methoxyphenyl)acenaphthylene ( 36 ) with O3 (simultaneous transfer of three O‐atoms) leads to the same experimental result as a stepwise transfer of one O‐atom followed by a transfer of two O‐atoms.  相似文献   

15.
Chrysanthemum morifolium cv. Fubaiju is rich in phenolic compounds with various benefits such as anti-inflammatory, antioxidant, and cardiovascular protection. In this study, 12 phenolic compounds, including five flavonoid glycosides and seven quinic acid derivatives, were successfully separated from the flowers of Chrysanthemum morifolium cv. Fubaiju by high-speed counter-current chromatography and preparative high-performance liquid chromatography. Ethyl acetate-n-butanol–acetonitrile–water–acetic acid (5:0.5:2.5:5:0.25, v/v/v/v/v) was selected as solvent system to separate six fractions from the flowers of Chrysanthemum morifolium cv. Fubaiju, and 20% aqueous acetonitrile (containing 0.1% formic acid) was chosen to be the elution solvent in preparative high-performance liquid chromatography for purifying the fractions above. Luteolin-7-O-β-D-glucoside ( 1 ), luteolin-7-O-β-D-glucuronide ( 2 ), apigenin-7-O-β-D-glucoside ( 3 ), luteolin-7-O-β-D-rutinoside ( 4 ), diosmetin-7-O-β-D-glucoside ( 5 ), chlorogenic acid ( 6 ), 1,5-dicaffeoylquinic acid ( 7 ), 1,4-dicaffeoylquinic acid ( 8 ), 3,4-dicaffeoylquinic acid ( 9 ), 3,4-dicaffeoyl-epi-quinic acid ( 10 ), 3,5-dicaffeoylquinic acid ( 11 ), and 4,5-dicaffeoylquinic acid ( 12 ) were isolated with purities all above 95%, respectively. In addition, all isolates were evaluated for their protective effects on H2O2-induced oxidative damage in adult retinal pigment epithelial cells.  相似文献   

16.
Using 51V, 17O, 13C and 1H NMR spectroscopy, vanadium(V) alkylperoxo complexes VO(OOtBu)k(OnBu)3-k, where k = 1, 2 and 3, were characterized in the reaction of VO(OnBu)3 with tBuOOH in CH2Cl2.  相似文献   

17.
To evaluate the important Vitis amurensis germplasm, the quality characteristics and anthocyanin profiles of the ripe berries of 20 V. amurensis grapes and 11 interspecific hybrids in two consecutive years were analysed. Compared with the V. vinifera grapes, V. amurensis grapes had small berries with low total soluble solids and high titratable acids, and were richer in phenolic compounds except for flanan-3-ols in their skins but had lower phenolic contents in their seeds and showed lower antioxidant activities. An outstanding feature of the V. amurensis grapes was their abundant anthocyanin contents, which was 8.18-fold higher than the three wine grapes of V. vinifera. The anthocyanin composition of V. amurensis was characterized by an extremely high proportion of diglucoside anthocyanins (91.71%) and low acylated anthocyanins (0.04%). Interestingly, a new type of speculated 3,5,7-O-triglucoside anthocyanins was first identified and only detected in V. amurensis grapes and hybrids. Based on the total phenolic and anthocyanin characteristics, V. amurensis grapes were set apart from V. vinifera cultivars and the interspecific hybrids, for the same qualities, fell between them, as assessed by principal component analysis.  相似文献   

18.
以金属Ti和V作为靶材,采用直流反应共溅射技术在室温下制备了以{211}晶面为主的锐钛矿相Ti1-xVxO2薄膜,研究了不同V靶功率对Ti1-xVxO2薄膜的薄膜成分、晶相结构和可见光催化性能的影响。研究表明,Ti1-xVxO2薄膜的晶相结构为锐钛矿相,择优取向为(211),而结晶度受V靶功率的影响。随着V靶功率的增加,薄膜中V元素含量逐渐增加,同时,晶粒和沉积速率也逐渐增加。另外,当V靶功率为150 W时,薄膜的表面粗糙度值有一个最大值。V的掺杂导致薄膜的能带间隙变窄,对光的吸收向可见光区偏移,从而有效地改善了薄膜的可见光催化能力。当V靶功率为150 W时,Ti1-xVxO2薄膜的能带间隙值为 2.82 eV,其在2 h的可见光照射下分解了80%的RhB染料。这被归结于能带间隙窄,高能晶面{211}和结晶度高的共同作用。  相似文献   

19.
In order to investigate the influence of the oxygen partial pressure (p(O2)) on the electrical conductivity, VNb9O25 was prepared by thermal decomposition of freeze-dried oxalate precursors and by a solid state reaction of V2O5/Nb2O5 mixtures. The samples were characterised by X-ray diffraction, grain size analysis and scanning electron microscopy (SEM). The electrical conductivity of the n-type semiconductor VNb9O25−δ can be interpreted as an activated hopping process with a preferred localisation of charge carriers at V(IV) centres. The electronic structure of VNb9O25−δ was calculated within the framework of the local density approximation (LDA) to DFT. Partial reduction of V(V) centres causes localised vanadium states to appear inside the band gap. The calculated activation energy values are in good agreement with the experimental ones.  相似文献   

20.
The inner-sphere isomerization of the peroxo complexes of vanadium(V) with the general formula [VO6]? was studied using approximations based on the density functional theory (B3LYP/6-31G**) and the Møller-Plesset perturbation theory (MP2/6-31G**). It was found that the complex [V(=O)(ηO2)(O3)]? containing the O3 group as a bidentate ligand was the most stable isomer. The transition state region of a rear-rangement of the triperoxo complex [V(ηO2)3]? into [V(=O)(ηO2)(O3)]? was localized. It was found that the activation barrier (~30 kcal/mol) was mainly due to O-O bond cleavage in the peroxo ligand. According to calculations, the reaction proceeds through two intermediate complexes whose structure can be interpreted as that containing coordinated singlet dioxygen (especially in the limiting case) because of noticeably shortened O-O bonds in the ηO2 ligand. The calculated reaction scheme of the conversion of [V(ηO2)3]? into [V(=O)(ηO2)(O3)]? is qualitatively consistent with the previously found kinetics of the formation of ozone and the oxidation of alkanes, olefins, arenes, and singlet dioxygen traps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号