首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Monodisperse poly(acrylic acid)‐modified Fe3O4 (PAA@Fe3O4) hybrid microspheres with dual responses (magnetic field and pH) were successfully fabricated. The PAA polymer was encapsulated into the inner cavity of Fe3O4 hollow spheres by a vacuum‐casting route and photo‐initiated polymerization. TEM images show that the samples consist of monodisperse porous spheres with a diameter around 200 nm. The Fe3O4 spheres, after modification with the PAA polymer, still possess enough space to hold guest molecules. We selected doxorubicin (DOX) as a model drug to investigate the drug loading and release behavior of as‐prepared composites. The release of DOX molecules was strongly dependent on the pH value due to the unique property of PAA. The HeLa cell‐uptake process of DOX‐loaded PAA@Fe3O4 was observed by confocal laser scanning microscopy (CLSM). After being incubated with HeLa cells under magnet magnetically guided conditions, the cytotoxtic effects of DOX‐loaded PAA@Fe3O4 increased. These results indicate that pH‐responsive magnetic PAA@Fe3O4 spheres have the potential to be used as anticancer drug carriers.  相似文献   

2.
We report a facile fabrication of a host–metal–guest coordination‐bonding system in a mesostructured Fe3O4/chitosan nanoparticle that can act as a pH‐responsive drug‐delivery system. The mesostructured Fe3O4/chitosan was synthesized by a solvothermal approach with iron(III) chloride hexahydrate as a precursor, ethylene glycol as a reducing agent, ammonium acetate as a porogen, and chitosan as a surface‐modification agent. Subsequently, doxorubicin (DOX), acting as a model drug (guest), was loaded onto the mesostructured Fe3O4/chitosan nanoparticles, with chitosan acting as a host molecule to form the NH2? ZnII? DOX coordination architecture. The release of DOX can be achieved through the cleavage of coordination bonds that are sensitive to variations in external pH under weakly acidic conditions. The pH‐responsive nature of the nanoparticles was confirmed by in vitro releases and cell assay tests. Furthermore, the relaxation efficiency of the nanoparticles as high‐performance magnetic resonance imaging contrast agents was also investigated. Experimental results confirm that the synthesized mesostructured Fe3O4/chitosan is a smart nanovehicle for drug delivery owing to both its pH‐responsive nature and relaxation efficiency.  相似文献   

3.
Fe3O4@SiO2@polymer复合粒子的制备及在药物控制释放中的应用   总被引:1,自引:1,他引:0  
本文通过多步反应制备了一种新型的、多层结构的、多功能的磁性纳米复合粒子, (Fe3O4@SiO2@polymer). 纳米复合粒子内核是磁性Fe3O4纳米粒子, SiO2包裹在Fe3O4上能够使其稳定分散和保护其不被腐蚀氧化; 中间层是生物相容的聚天冬氨酸(PAsp)载药层; 最外层是亲水的聚乙二醇(PEG)稳定层. 磁性纳米复合粒子各层都是生物相容的, 利用静电作用将抗癌药物阿霉素(DOX)负载在磁性纳米复合粒子中, 通过PAsp的pH响应调节了DOX的释放速率.  相似文献   

4.
Novel multifunctional nanoparticles containing a magnetic Fe3O4@SiO2 sphere and a biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate) (PEG-b-PAsp) were prepared. The silica coated on the superparamagnetic core was able to achieve a magnetic dispersivity, as well as to protect Fe3O4 against oxidation and acid corrosion. The PAsp block was grafted to the surface of Fe3O4@SiO2 nanoparticles by amido bonds, and the PEG block formed the outermost shell. The anticancer agent doxorubicin (DOX) was loaded into the hybrid nanoparticles via an electrostatic interaction between DOX and PAsp. The release rate of DOX could be adjusted by the pH value.  相似文献   

5.
In this paper, a new drug delivery system was designed using magnetic Fe3O4/carboxymethylchitosan nanoparticles (Fe3O4/CMCS NPs) as carrier and rapamycin (Rapa) as the antitumor drug. The process and formulation variables of Fe3O4/CMCS-Rapa NPs were optimized using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). The independent variables were the mass ratio of Fe3O4/CMCS: Rapa, W/O phase ratio and stirring rate; dependent variables were drug loading content and entrapment efficiency. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The optimized formulation was characterized by TEM, FT-IR, and in vitro drug release. Results for mean particle size, drug loading content, entrapment efficiency and in vitro drug release of Fe3O4/CMCS-Rapa were found to be of 30 ± 2 nm, 6.32% ± 3.36%, 62.9% ± 2.30%, and 65.35% ± 2.46% at pH 7.4 after 70 h, respectively; also, they possess magnetism with a saturation magnetization of 67.1 emu/g, negligible coercivity and remanence at room temperature. Also the effect of magnetic targeted nanoparticles on the proliferation of human hepatoma cell line HepG2 in vitro was investigated. The results from MTT assays showed that the Fe3O4/CMCS-Rapa nanoparticles could effectively inhibit the proliferation of HepG2 cells, which displayed time or concentration-dependent manner. All these results indicated that the nanoparticles had the potential to be used as a novel drug carrier system.  相似文献   

6.
The drug delivery performances of pH‐responsive magnetic hydrogels (MHs) composed of tragacanth gum (TG), poly(acrylic acid) (PAA), and Fe3O4 nanoparticles (NPs) were investigated in terms of physicochemical as well as biological features. The fabricated drug delivery systems (DDSs) were analyzed using Fourier transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometer, scanning electron microscopy, and transmission electron microscopy. The synthesized MHs were loaded with doxorubicin hydrochloride (Dox) as a universal model anti‐cancer drug. The MHs showed excellent Dox loading and encapsulation efficiencies, mainly due to strong hydrogen bonding and electrostatic interaction between the drug and polymeric matrix, as well as porous micro‐structures of the fabricated MHs. The drug‐loaded MHs showed negligible drug release values in physiological condition. In contrast, in cancerous condition (pH 5.0), both MHs exhibited highest drug release values that qualified them as “smart” DDSs. The cytocompatibilities of the MHs as well as the cytotoxicity of the Dox‐loaded MHs were investigated against human epidermoid‐like carcinoma (Hela) cells through MTT assay. In addition, hyperthermia therapy induced by Fe3O4 NPs was applied to locally raise temperature inside the Hela cells at 45 ± 3°C to promote cell death. As a result, the Dox‐loaded MHs can be considered as potential DDSs for chemo/hyperthermia therapy of solid tumors.  相似文献   

7.
In this work, functionalized chitosan end‐capped Ag nanoparticles (NPs) and composited with Fe3O4‐NPs was prepared as pH‐responsive controlled release carrier for gastric‐specific drug delivery. The structure of prepared material was characterized by FE‐SEM, XRD, EDS and FT‐IR analysis. The loading behavior of the progesterone onto this novel material was studied in aqueous medium at 25°C and their release was followed spectrophotometrically at 37°C in seven different buffer solutions (pH 1.2, 2.2, 3.2, 4.2, 5.2, 6.2 and 7.2) to simulate intestine and gastric media which experimental results reveal more release rate in pH 1.2 (gastric medium) with respect to other buffers. This observation is attributed to dependency of the CS‐IMBDO‐Ag‐Fe3O4‐NPs and progesterone structure with buffer pH that candidate this new material as prospective pH‐sensitive carrier for gastric‐targeted drug delivery. On the other hand, the antibacterial properties of this material against gram‐negative bacterium pseudomonas aeruginosa (PAO‐1) in agar plates was studied and accordingly based on broth micro dilution the minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) with respect to standard CLSI in different concentrations of CS‐IMBDO‐Ag‐Fe3O4‐NPs was calculated. The results reveal that MIC and MBC values are 50 and 1250 μg/mL, respectively. In addition, extracts of Portulaca oleracea leaves was prepared and its antibacterial activity in single and binary system with CS‐IMBDO‐Ag‐Fe3O4‐NPs as synergies effect against PAO‐1 was tested and results shown that these materials have significant synergistic effect for each other.  相似文献   

8.
In this study, a novel method was used to synthesize the poly(N-isopropylacrylamide-co-acrylic acid)/Fe3O4 (poly(NIPAAm-AA)/Fe3O4) magnetic composite latex. The crosslinked poly(NIPAAm-AA) polymer latex particles were first synthesized by the method of soapless emulsion polymerization, then Fe2+ and Fe3+ ions were introduced to bond with the -COOH groups of AA segments in poly(NIPAAm-AA) polymer latex particles. Further by a reaction with NH4OH, Fe3O4 nanoparticles were generated in situ. The concentrations of acrylic acid (AA), crosslinking agent (N,N′-methylene bisacrylamide (MBA)), and Fe3O4 nanoparticles were important factors to influence the morphology and lower critical solution temperature (LCST) of poly(NIPAAm-AA)/Fe3O4 magnetic composite latex particles. The poly(NIPAAm-AA)/Fe3O4 latex particles were used as a thermosensitive drug carrier to load caffeine. The control release of caffeine was studies. Morphology-based schematic models were proposed to explain the control release behavior of the composite particles with different compositions. Moreover, the protein (albumin, acetylated from bovine serum (BSA)) was bound on the surface of poly(NIPAAm-AA)/Fe3O4 composite latex particles. The effects of AA, crosslinking agent and Fe3O4 contents on the amount of BSA binding were investigated at different temperatures and pH values. The composition-morphology-BSA conjugation relationship was established.  相似文献   

9.
In this work, Fe3O4/poly(3-acrylamidephenylboronic acid-co-(2-dimethylamino) ethyl methacrylate) (Fe3O4/P(AAPBA-co-DMAEMA)) hydrogels possessing magnetic and triple-responsive properties and semi-interpenetrated by β-cyclodextrin-epichlorohydrin (β-CD-EPI) were prepared via radical polymerization. The characteristics of the materials have been investigated by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM). The swelling measurements and the application of Fe3O4/P(AAPBA-co-DMAEMA)/(β-CD-EPI) hydrogels in controlled release of drug were also investigated. It was found that the magnetic hydrogels exhibit swelling behaviors affected by pH, temperature, glucose concentration and magnetic field, and have porous morphologies, superparamagnetism. Moreover, the hydrogels possess targeting and could control the release of quercetin by adjusting pH value, temperature, glucose concentration and magnetic field.  相似文献   

10.
Novel less than 100 nm sized magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles advantageous in respect of excellent biodegradation and high level of controllability are successfully prepared. TEM and SEM images showed the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by spherical chitosan nanoparticles. The release behavior of bovine serum albumin entrapped in the particles was of distinctly difference with the changes of pH value of loading medium. The release of bovine serum albumin in those two kinds of particles in the medium of pH=1.0 was much quicker in pH = 7.4 and 9.18. The amount of Bovine serum albumin (BSA) released from the particles at different time intervals was estimated using UV spectrophotomertic method at 279 nm. The dissolution profile and in vitro release kinetics showed that Co0.5Mn0.5Fe2O4-chitosan nanoparticles were promising for controlled delivery of the drug.  相似文献   

11.
The proposed study examined the preparation of chitosan (CS)–polyvinylpyrrolidone (PVP)–bovine serum albumin (BSA)-coated magnetic iron oxide (Fe3O4) nanoparticles (Fe3O4–CS–PVP–BSA) to use as potential drug delivery carriers for delivery of tamoxifen drug (TAM) . The anticancer drug selected in this study was tamoxifen which can be used for the human breast cancer treatment. These prepared nanoparticles were characterized by FTIR, XRD, SEM, AFM, TEM, CD and VSM techniques. The swelling studies have been measured at different (10, 20, 30, 40, 50%) drug loading. The mean particle size of the tamoxifen-loaded nanoparticles system (Fe3O4–CS–TAM, Fe3O4–CS–TAM–PVP and Fe3O4–CS–TAM–PVP–BSA) as measured by Malvern Zetasizer ranged between 350 ± 2.3 and 601 ± 1.7 nm. As well as these drug-loaded nanoparticles were positively charged. The zeta potential was in the range of 28.9 ± 3.5 and 50.8 ± 3.9 mV. The encapsulation efficiency was between 63.60 ± 2.11 and 96.45 ± 2.12%. Furthermore, in vitro release and drug loading efficiency from the nanoparticles were investigated. The cytotoxicity of prepared nanoparticles was verified by MTT assay. In vitro release studies were executed in 4.0 and 7.4 pH media to simulate the intestinal and gastric conditions and different temperature (37 and 42 °C). Hence, the prepared tamoxifen-loaded nanoparticles system (Fe3O4–CS–TAM, Fe3O4–CS–TAM–PVP and Fe3O4–CS–TAM–PVP–BSA) could be a promising candidate in cancer therapy.  相似文献   

12.
Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step templatefree approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit superparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.  相似文献   

13.
This study aimed to synthesize a composite material consisting of metal–organic framework based magnesium(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) and its modification using graphene oxide (GO) and Fe3O4. The obtained material (i.e., [Mg3(BTC)2]/GO/Fe3O4) was studied as a matrix for the slow release of ibuprofen. [Mg3(BTC)2]/GO/Fe3O4 matrices were synthesized ex situ with the sonochemical method (material 1) and in situ with the solvothermal method (material 2). The obtained materials were completely characterized by X-ray diffraction and Fourier-transform infrared spectroscopy. Based on scanning electron microscopy imaging, the produced materials were spherical. The presence of GO and Fe3O4 in material 1 and material 2 reduced the surface area, but it increased the adsorption capacity of ibuprofen up to 94.12%. The magnetic properties of materials 1 and 2 were observed using a vibrating sample magnetometer. These results demonstrate that modification of Fe3O4 nanoparticles induces paramagnetic properties in both materials. The presence of this matrix material was able to release ibuprofen up to seven times slower at pH 5.0 and 12 times slower at pH 7.4. An increase in the pH lead to an increase in the concentration of ibuprofen released to 33.31% more than at pH 5.0.  相似文献   

14.
以氨基功能化的Fe_3O_4纳米颗粒为磁核,结合直接沉淀法和模板法在其表面包覆上介孔MoO_3层,制备磁性-微波热转换性-介孔结构于一体的多功能核-壳结构复合纳米载体Fe_3O_4@mMoO_3,并对其结构、载药及微波控制靶向给药性进行研究。TEM图表明所得的复合纳米载体具有明显的核壳结构,完美的球形,且壳层中有清晰的孔状结构。磁性和微波热转换特性分析表明,该复合载体兼具良好的磁性和微波热转换特性,可实现药物的靶向可控给药。以布洛芬(IBU)为模型药物,对该复合纳米载体的药物负载能力和微波响应可控释放性进行研究,结果表明,在持续微波辐射90 s时IBU的释放率达到90%,远远高于仅搅拌时的释放率。  相似文献   

15.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

16.
Nanophase Fe3O4 and Fe2O3 were synthesized through a precipitation method and were utilized for the removal of either arsenic (III) or (V) from aqueous solution as a possible method for drinking water treatment. The synthesized nanoparticles were characterized using X-ray diffraction, which showed that the Fe3O4 and the Fe2O3 nanoparticles had crystal structures of magnetite and hematite, respectively. In addition, Secherrer's equation was used to determine that the grain size nanoparticles were 12 ± 1.0 nm and 17 ± 0.5 nm for the Fe2O3 and Fe3O4, respectively. Under a 1 h contact time, batch pH experiments were performed to determine the optimum pH for binding using 300 ppb of either As(III) or (V) and 10 mg of either Fe3O4 or Fe2O3. The binding was observed to be pH independent from pH 6 through pH 9 and a significant drop in the binding was observed at pH 10. Furthermore, batch isotherm studies were performed using the Fe2O3 and Fe3O4 to determine the binding capacity of As(III) and As(V) to the iron oxide nanomaterials. The binding was found to follow the Langmuir isotherm and the capacities (mg/kg) of 1250 (Fe2O3) and 8196 (Fe3O4) for As(III) as well as 20,000 (Fe2O3) and 5680 (Fe3O4) for As(III), at 1 and 24 h of contact time, respectively. The As(V) capacities were determined to be 4600 (Fe2O3), 6711(Fe3O4), 4904 (Fe2O3), and 4780 (Fe3O4) mg/kg for nanomaterials at contact times of 1 and 24 h respectively.  相似文献   

17.
A bicontrollable drug release system was developed by layer-by-layer assembly of poly(allylamine hydrochloride) (PAH)/sodium poly(styrene sulfonate) (PSS) multilayers onto a Fe3O4/SiO2 composite core. The saturated magnetization of this system reaches up to 38.6 emu/g at RT, making targeting easily controlled by an external magnetic field. Meanwhile, the packing of the polyelectrolyte multilayers is sensitive to pH values, generating a pH-switch on-off mode for the release of loaded drugs. In this specific case, the release of a chemotherapeutic polyoxometalate K7Ti2W10PO40·6H2O (PM–19) was tested. Transmission electron microscopy (TEM) was used to examine the nanostructure of the composite drug release system. UV–vis absorption was used to monitor the drug release. Fourier transform infrared (FTIR), Powder X–ray diffraction, and Elemental analyses were used to study the composition of tested systems. The structure and composition of the composite system was also studied using magnetism measurement and nitrogen adsorption–desorption.  相似文献   

18.
This paper demonstrated the preparation of temperature-responsive magnetomicelles that consist of a functionalized hexagonal magnetic core, Fe3O4-undecylenic acid (Fe3O4-UA), and an amphiphilic surface layer of temperature-responsive polymer. The functionalized magnetic Fe3O4-UA core was prepared by a suspension-oxidation reaction in an aqueous solution, during which the formation of the Fe3O4 and coordination of UA to the Fe3O4 occurred simultaneously. Amphiphilic poly(undecylenic acid-co-N-isopropylacrylamide) (P(UA-co-NIPAAm)) was grafted to the Fe3O4-UA core as a temperature-responsive micellar surface layer to prepare well dispersed Fe3O4-UA-g-P(UA-co-NIPAAm) magnetomicelles with the size of around 8 nm in water. The application of resulted nanosized Fe3O4-UA-g-P(UA-co-NIPAAm) magnetomicelles in controlled drug delivery was further investigated and it was found that resulting magnetomicelles exhibited good potential for temperature triggered controlled drug release.  相似文献   

19.
The potential of the Fe3O4, Mn3O4, and MnFe2O4 nanophases for the removal of arsenic(III) and (V) from aqueous solutions was investigated using the batch technique. The structure and grain size of the nanoadsorbents were characterized using XRD and Secherrer's equation. The Fe3O4, Mn3O4, and MnFe2O4 had the crystal structure of magnetite, hausmannite, and Jacobsite, while the grain sizes were 28, 25, and 12 nm, respectively. It was found that the sorption determined using 100 ppb of either As(III) or (V) was pH independent from pH 2 through pH 6. However, at pH below 3 the nanomaterials released high concentrations of iron and manganese into solution. The amount of both As(III) and (V) per gram of adsorbent was found to increase with increasing concentration of As in solution. The XRD analysis showed no decrease in the average grain size of the nanoadsorbents reacted with 1000 ppm of either As(III) or (V) or a combination of 500 ppm of each As species. Finally Fe3O4, Mn3O4, and MnFe2O4 showed binding capacities (µg/g) of 32.2, 8.9, and 718 for As(III) and 1575, 212 and 2125 for As(V), respectively.  相似文献   

20.
磁性Fe3O4/石墨烯Photo-Fenton催化剂的制备及其催化活性   总被引:3,自引:0,他引:3  
采用共沉淀法制备磁性Fe3O4/GE(石墨烯)催化剂,实现Fe3O4纳米颗粒生长和氧化石墨烯还原同步进行,采用FTIR、XRD、TEM及低温氮吸附-脱附等对Fe3O4/GE纳米催化剂的物相、颗粒粒径及比表面积进行了表征。在H2O2存在条件下,以亚甲基蓝为目标降解物,考察了在模拟太阳光下Fe3O4/GE的催化活性,当氧化石墨烯与Fe3O4的质量比为1∶10时,经过2 h催化反应,在pH=6条件下,对亚甲基蓝的降解率达到98.7%,经过10次循环使用后对染料溶液的降解率仍保持在95.7%以上,明显优于纯的Fe3O4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号